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Abstract  

In everyday vision, objects in scenes are often poorly or only partially visible, for example 

because they are occluded or appear in the periphery. Previous studies have shown that the 

visual system can reconstruct missing object information based on the spatial context in static 

displays. Real-world vision is dynamic, however, causing the visual appearance of objects (e.g., 

their size and viewpoint) to change as we move. Importantly, these changes are highly 

predictable from the 3D structure of the surrounding scene, raising the possibility that the 

visual cortex dynamically updates object representations using this predictive contextual 

information. Here, we tested this hypothesis in two fMRI studies (N=65). Experiment 1 showed 

that visual representations of objects were sharpened when they rotated congruently (rather 

than incongruently) with the surrounding scene. Moreover, Experiment 2 showed that the 

updated orientation of the object (as dictated by the surrounding scene) could be decoded 

from visual cortex activity, even when the object itself was not visible. These findings indicate 

that predictive processes in the visual cortex follow the geometric structure of the 

environment, thus providing a mechanism that leverages predictions to aid object perception in 

dynamic real-world environments.  

 

 

Introduction 

Real-world vision is inherently inferential1–3. For example, when part of a scene is occluded, we 

use contextual information to infer the occluded parts4. Recent research has shown that such 

perceptual inferences activate regions of visual cortex that are also activated during stimulus-

driven perception. For example, neuroimaging studies in humans5–7, and electrophysiological 

recordings in non-human primates8 and rodents9, revealed that patterns of neural activity in 

early visual cortex (EVC) contained information about occluded parts of scenes. Similarly, 

neuroimaging studies showed that scene context modulated late visual cortex (LVC) 

representations of degraded and poorly visible objects, such that these representations became 

more similar to the representations of fully visible objects10,11. These studies show that 

perceptual inferences based on (static) scene context do not only affect higher-level decisional 

stages12 but also modulate and activate visual cortex representations, thereby shaping our 

perceptual experience13,14. 

Perceptual inferences in the real world, however, are not only based on static context. 

As we move, our view of a scene - and the objects within that scene - changes. These changes 

depend on geometric constraints such as the way a 3D rotation results in a 2D image change on 

the retina. Importantly, inanimate objects (e.g., a bed) usually remain stable relative to the 

scene background (e.g., a room). This allows for predicting the appearance of objects from new 

viewpoints based solely on viewing the scene background. In a recent behavioral study, we 

found that temporarily occluded objects placed in scenes were indeed automatically mentally 

rotated together with the changing viewpoint of the surrounding scene15. Specifically, 

participants performed better on a challenging change discrimination task on the visual object, 

when the object re-appeared in an orientation that was consistent with the (now rotated) 

background scene. Because the amount of scene rotation was unpredictable in that study, the 
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new viewpoint of the object could only be inferred from the new viewpoint of the scene, and 

not through continuous mental rotation of the object alone. This finding provides evidence that 

predictions of 3D object rotations can occur automatically, as a product of contextual 

information (in a subsequent study, we found this to occur for translation as well as rotation16). 

To our knowledge, it is unknown whether such dynamic context predictions modulate and/or 

activate visual cortex activity in the way that static context predictions do. Do visual object 

representations dynamically update in accordance with changes in scene viewpoint? 

Here, we used fMRI to address this question. In Experiment 1, we tested for modulatory 

effects of dynamic context predictions in visual cortex. Specifically, we hypothesized that visual 

cortex representations are sharpened when objects re-appear in a viewpoint that is congruent 

rather than incongruent with the (new) scene viewpoint. Sharpened representations are 

characterized by more information about some property of the object (measured through 

multivariate decoding), possibly accompanied by less overall neural activity (lower univariate 

activation)17,18. In Experiment 2, we went one step further and tested whether dynamic context 

predictions of object appearance not only modulate but also directly activate visual cortex. That 

is, we tested whether information about the new object orientation (derived from the scene 

viewpoint) would be present in visual cortex, even when the object itself is still occluded and 

thus fully invisible. If so, this would provide an important generalization of studies investigating 

static context predictions5,6,8 or predictions involving highly simplified stimuli19,20 to the 

complexity of real-world environments. 

In both fMRI studies, we focused on two regions of interest (ROIs) within the visual 

cortex: early visual cortex (EVC; Brodmann areas 17 and 18), given its known role in the 

completion of partially visible scenes5,6,8, and late visual cortex (LVC; Brodmann areas 19 and 

37), which has been implicated in context-driven inference of object properties10,11,21. In 

Experiment 1, we decoded, from activity patterns in these two ROIs, the proximal (i.e., 2D) 

shape of objects that, after an occlusion period, reappeared oriented congruently or 

incongruently with the rotation of the surrounding scene (Figure 1A). Critically, the initial 

viewpoint and amount of rotation were chosen such that objects could reappear either in a 

‘wide’ or ‘narrow’ projection on the 2D image plane (e.g., a bed viewed from the side, versus 

the tail end). We found that representations of congruent objects, relative to incongruent 

objects, were enhanced in EVC, as demonstrated by better discriminability of multivariate 

activity patterns (i.e., ‘wide’ versus ‘narrow’ decoding). This enhancement was accompanied by 

an overall lower activation at the whole-brain level, indicating a sharpening of neural 

representations similar to that elicited by other forms of expectations in visual cortex17,18. In 

Experiment 2, we directly decoded the proximal shape of these same objects, but now during 

the period of occlusion (while no object was visible on the screen), to determine whether 

object representations were updated coherently with the rotation of the scene context. Here, 

we found that proximal object shape could be reliably decoded throughout visual cortex, 

providing evidence for purely top-down driven activity reflecting the predicted object 

orientation, solely derived from the new scene viewpoint. 

 Together, these results indicate that scene completion in human visual cortex 

generalizes to the prediction of object appearance across viewpoint changes in 3D scenes, 
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providing a potential mechanism for efficiently processing partially visible scenes in dynamic 

real-world environments. 

 

Results 

Experimental design 

In both fMRI experiments, participants viewed realistic indoor scenes (rooms) featuring a 

central object (a bed or couch) oriented in one of two possible angles relative to the scene 

Figure 1. (A) Outline of the experimental design. The stimuli were images of rooms containing a central 

object, which could be shown at one of two possible orthogonal orientations (labeled A and B) relative to the 

room. The room could undergo two different total amounts of rotation – small (30°) and large (90°). After the 

room’s rotation, the object could be either in a Congruent view (with the same orientation relative to the 

room as at the beginning of the trial) or in an Incongruent view (with the other possible orientation – B if the 

initial orientation was A or vice versa). (B) Examples of the full rotation sequence for a small and large 

rotation. The rotation was shown in discrete steps, and the object was fully occluded after the first two 

rotation step until the whole rotation was complete. (C) Temporal outline of a trial. After the rotation was 

complete, the occluder would disappear, revealing the object in either the Congruent or Incongruent view. 

The object would be briefly flashed (50 ms) twice, in two slightly different orientations. Participants had to 

determine whether the second orientation was clockwise or counterclockwise relative to the first. This task 

was fully orthogonal to the congruency of the object’s orientation, in order to gauge whether participants 

would automatically predict it given the surrounding scene’s rotation. (D) Mean (and SEM) accuracy on the 

behavioral task for Congruent and Incongruent trials (left) and distribution of differences in accuracy 

(Congruent minus Incongruent) across participants. Participants were more accurate when the object’s final 

view was Congruent. ** p < 0.01 
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(Figure 1A). On each trial, the scene would start rotating around the vertical axis in discrete 

snapshots, causing a change in scene viewpoint (Figure 1B). During the first two snapshots the 

object was fully visible, so that participants could learn how the object was positioned within 

the room. During the subsequent three snapshots the object was occluded, so that participants 

would only see the rotating room. In the last snapshot, which occurred on every trial of 

Experiment 1, the occluder was removed, so that the object became visible again (Figure 1C). 

Critically, the object reappeared in an orientation that was either congruent (75% of the trials) 

or incongruent (25% of the trials) with its original positioning within the room (Figure 1A). The 

total amount of rotation (from initial to final viewpoint) was either 30˚ or 90˚. The amount of 

rotation on a given trial remained unknown before the object was occluded. Therefore, the 

new orientation of the object could only be inferred from the new orientation of the room. 

Importantly, the exact same stimuli (initial and final viewpoints) were used for trials with 

congruently and incongruently rotated objects. Thus, whether an object was rotated 

congruently or incongruently could only be inferred through dynamic updating of the object 

orientation, based on the changing viewpoint on the scene. 

Another key aspect of the design is that the two initial object orientations and the two 

scene rotation angles were chosen to result in two categorically distinct proximal object shapes 

in the final snapshot: either a wide or a narrow shape (i.e., the object evoked a wide or narrow 

projection on the 2D image plane). This was done to maximize the power of the multivariate 

decoding analyses, discriminating between patterns of activity evoked by wide versus narrow 

shapes. 

 

Enhanced representations of congruently rotated objects in EVC 

In Experiment 1 (N = 35), the occluder was removed during the final scene viewpoint, so that 

the object reappeared. On 75% of trials, the object reappeared in an orientation that was 

Congruent with the rotation of the surrounding scene, while on the remaining 25% it was 

Incongruent (Figure 1A). Importantly, the same physical stimuli counted as Congruent or 

Incongruent depending only on the trial context, avoiding any stimulus-related confounds. We 

compared participants’ performance in an orthogonal perceptual task (see Methods and Figure 

1C), as well as BOLD activity patterns in our two ROIs, evoked by Congruent and Incongruent 

reappearing objects. 

Behaviorally, participants were more accurate on Congruent than Incongruent trials 

(mean hit rate: 0.64 vs. 0.60, t(34) = 2.99, p = 0.005, d = 0.67, CI = [0.01, 0.06], Figure 1D). This 

indicates that the rotation of the scene induced an expectation of the object’s orientation, and 

that this expectation influenced participants’ perceptual processing of the objects. 
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Figure 2. (A) The cross-decoding scheme used in Experiment 1. Linear classifiers were trained to distinguish 

wide and narrow object views from cortical responses obtained in separate training runs. The stimuli in these 

runs were the final views shown in the main task runs, but presented without any preceding rotation 

sequence. To ensure that decoding was driven by the object’s proximal shape, and not by confounding 

features such as the overall orientation of the scene, separate classifiers were trained to distinguish wide and 
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To examine the information about Congruent and Incongruent objects in visual cortex, we 

trained linear classifiers to distinguish the object’s proximal shape (wide versus narrow 

projection) from BOLD activation patterns. These classifiers were trained on separate training 

runs, in which all possible final object and scene orientation combinations were shown without 

the preceding rotation sequence (Figure 2A). The purpose of these training runs was to 

estimate benchmark visual cortical responses to wide versus narrow object orientations, 

regardless of their contextual (in)congruency. Overall, the proximal shape of the objects could 

be decoded reliably above chance in both EVC (mean classifier information 0.28, t(34) = 13.85, 

p = 8.6e-16, d = 2.39, CI = [0.24, 0.32]) and LVC (mean classifier information 0.11, t(34) = 11.86, 

p = 1.2e-13, d = 2.00, CI = [0.14, 0.20]). Thus, information about the object’s appearance was 

present throughout the visual cortex. Decoding accuracy was significantly higher in EVC than 

LVC (t(34) = 7.11, p = 3.2e-08, d = 1.02, CI = [0.08, 0.14]), likely due to the stronger sensitivity of 

earlier visual areas to changes in an object’s appearance, such as across viewpoints22. 

Turning to our central analysis, we found that the shape of Congruent objects could be 

cross-decoded better than the shape of Incongruent objects in EVC, and this was consistent 

across a large range of voxel inclusion thresholds (Figure 2B, Congruent vs. Incongruent means 

across voxel numbers: 0.31 vs. 0.25, t(34) = 2.38, p = 0.023, d = 0.44, CI = [0.01, 0.11]). On the 

other hand, no difference in cross-decoding performance between Congruent and Incongruent 

objects was found in LVC (Figure 2B, Congruent vs. Incongruent means across voxel numbers: 

0.17 vs. 0.18, t(34) = -0.37, p = 0.71, d = 0.06, CI = [-0.04, 0.03]). To confirm that the difference 

between Congruent and Incongruent cross-decoding was stronger in EVC, we ran a within-

subject ANOVA with congruency (Congruent, Incongruent) and ROI (EVC, LVC) as factors. This 

analysis revealed a significant interaction between congruency and ROI (F(1, 34) = 12.18, p = 

0.0014, η2
p = 0.26). Congruency with the scene’s rotation, then, enhances the information 

present in visual cortex about the object’s proximal shape, and this effect appears to be specific 

to early stages of visual processing. 

narrow views with different background orientations (30° and 90°). Classifier information was then averaged 

across backgrounds. These were then tested on the (wide versus narrow) object views shown at the end of 

rotation sequences in the main task runs. Classifier information was compared between Congruent and 

Incongruent trials. (B) Multivariate decoding results of Experiment 1: as the number of voxels to be selected in 

each ROI (based on the functional localizer) was arbitrary, we varied this number between 100 and 6000 in 

steps of 100 voxels, creating 60 sub-ROIs with an increasingly liberal inclusion criterion. Classifier information 

was then averaged across sub-ROIs, and the difference between Congruent and Incongruent was computed for 

each participant and each hemisphere. This difference is shown on the left side: classifier information was 

significantly higher for Congruent than Incongruent object views in EVC, indicating that more information about 

the proximal object shape was present in this ROI. On the other hand, this difference was not found in LVC. The 

right side shows that these results were consistent across numbers of included voxels, averaged across 

participants and hemispheres (shaded regions denote SEM across participants). Asterisks denote significance of 

the difference between Congruent and Incongruent classifier information after applying TFCE (see Methods for 

details). * p < 0.05 
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Incongruent objects elicited a larger univariate response 

We next investigated whether the observed enhancement in multivariate decoding was 

accompanied by an overall higher univariate response. If participants were actively anticipating 

the appearance of an object that matched their scene-driven expectations, it is possible that 

attention to Congruent objects would lead to a larger univariate response23–25 . For example, a 

larger response would be expected if participants were actively maintaining the Congruent 

object in working memory25 or if attention was captured by the Congruent object23,24,26. A 

higher signal-to-noise ratio in conditions with overall higher response amplitudes could then 

underlie the better multivariate decoding in the Congruent condition. Alternatively, the 

enhancement of object information in EVC could have occurred in the absence of a higher 

univariate response, or even with a lower response. This would be consistent with a sharpened 

neural response to expected stimuli - a more efficient neural code in which more information is 

encoded with less activity17,18. 

INCONGRUENT CONGRUENT

>
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4.2

t 
s
c
o
re

Figure 3. Results of the univariate contrast between Incongruent and Congruent trials. Several clusters 

responded more strongly to Incongruent trials, while none responded more to Congruent ones. This result 

suggests that incongruently oriented objects elicited a ‘surprise’ response. 
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In EVC, which showed enhanced decoding for congruent object information, we did not 

observe any difference in univariate response, independently of the number of voxels included 

in the analysis (Figure S2): Congruent vs. Incongruent means across voxel numbers -1.98 vs. -

1.90, t(34) = -1.05, p = 0.302, d = 0.04, CI = [-0.22, 0.07]. In fact, the mean activation on 

Congruent trials was numerically lower. This result indicates that the enhanced multivariate 

decoding we observed in EVC does not result from an overall larger univariate response.   

We next ran a whole-brain univariate contrast, to determine whether any clusters in the 

brain display a significantly higher response to either Congruent or Incongruent objects. There 

were no clusters responding more to Congruent than Incongruent objects. Conversely, several 

clusters responded more to Incongruent than Congruent objects (Figure 3, Table S1). The most 

prominent clusters were found in the precuneus, angular gyrus and inferior parietal lobe, areas 

associated with attentional reorienting and cognitive control. Together, these results indicate 

that the congruency of objects with the rotation of the scene evoked an overall smaller, not 

larger, univariate response. This finding is consistent with the idea of congruent object 

representations being sharpened in the visual cortex17,18. Moreover, it reinforces the conclusion 
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Figure 4. (A) Illustration of the information-activation coupling analysis. Given a seed timecourse of 

multivariate classifier information in an ROI (in our case, EVC) after stimulus onset, and a target timecourse of 

univariate activation for each voxel in the brain, the per-voxel correlation with the seed timecourse is 

computed across the whole brain. These correlations are then compared between the Congruent and 

Incongruent conditions, to reveal voxels that are more strongly coupled with multivariate information in EVC 

in the Congruent condition. (B) Results of the one-sided univariate contrast between the correlation maps for 

Congruent and Incongruent trials. Several clusters were found that were significantly more coupled on 

Congruent than Incongruent trials, corresponding to higher-level visual cortex, parietal, premotor and inferior 

frontal cortex (see text for details). 
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of our recent behavioral work15, that scene-driven object predictions are generated 

automatically rather than as a product of active and voluntary mental operations. 

 

Multivariate enhancement co-varied with activation in higher-level visual cortex 

Given the high-level nature of the contextual enhancement observed in EVC, which required 

the integration of information across large regions of the visual field, most likely it involved 

computations occurring in higher-level visual or associative areas. The previously reported 

enhanced decoding of degraded objects embedded in scenes, for example, is driven by 

feedback from scene-selective cortex10,27,14. To reveal which brain regions were involved in the 

enhancement we observed, we ran an information-activation coupling analysis28. This analysis 

determines whether the univariate activation of particular voxels co-varies, across timepoints 

after stimulus onset, with the accuracy of multivariate decoding in a seed region, in our case 

EVC. In particular, we tested whether this coupling was stronger in the Congruent than the 

Incongruent condition (see Methods for details). Locations in the brain that are more strongly 

coupled with the decoding accuracy in the seed region on Congruent than Incongruent trials are 

likely to be involved in the enhancement of Congruent object representations. 

We contrasted the coupling for Congruent and Incongruent conditions across the whole 

brain, as we did not have strong prior hypotheses about which regions might be the source of 

the novel form of scene-driven predictions we report. This analysis revealed several clusters 

showing greater coupling for Congruent than Incongruent objects (Figure 4 and Table S2). We 

used the Neurosynth platform29 to search for the terms most strongly associated with the peak 

coordinates of these clusters, based on meta-analysis maps. This search (see Table S3) revealed 

that two of the clusters were associated with visual motion and motion-sensitive area V5/MT 

(most associated terms: “visual motion”, “v5”, “motion”, “mt”) as well as with object processing 

(“fusiform”, “objects”, “object”). Other clusters were most strongly associated with the inferior 

frontal gyrus and premotor cortex (“inferior frontal”, “premotor”, “imitation”, “handed”), as 

well as with parietal cortex and spatial cognition (“spatial”, “parietal occipital”, “visuo”, 

“navigation”). These results suggest that the object predictions we observed involved the 

interaction between EVC and higher-level visual areas related to motion and object processing, 

as well as the inferior frontal gyrus, premotor and parietal cortices, which were previously 

implicated in coordinate transformations and mental rotation30,31. 

 

Scene rotation updated object representations in the absence of visual input 

Experiment 1 showed that scene-driven predictions about occluded objects sharpen visual 

cortical object representations. Expectations based on environmental regularities, beyond 

modulating visually-evoked activity, can also drive the inference of occluded parts of visual 

scenes5,6,8, and even elicit activations in the absence of visual input19,20. In Experiment 2 (N = 

30), we therefore set out to directly investigating the representation of the predicted object, 

while it was not visible on the screen (i.e., during occlusion).  
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Figure 5. (A) Multivariate cross-decoding scheme used in Experiment 2. Linear classifiers were trained to 

distinguish wide and narrow object views from BOLD activity in training runs. In these runs, objects were 

shown without any background. Object views were grouped in the ‘wide’ and ‘narrow’ categories based on 

their proximal shape, independently of their orientation relative to the scene and the viewer. Thus, the ‘wide’ 

category included both A30 and B90, and the ‘narrow’ category included both B30 and A90. The classifiers 

thus trained were then tested on the final period of trials in the main task runs, in which the scene had 

completed its rotation, and the object was still occluded. The goal was to determine whether an expectation 

of the occluded object’s rotated view was present in visual cortex despite the object not being visible. (B) 

Results of the multivariate decoding analysis of Experiment 2. Varying the number of voxels included in the 

analysis, we found that the expected proximal object shape could be reliably decoded above chance in visual 
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 The experimental design was largely consistent with that of Experiment 1, except that in 

Experiment 2, the central object remained occluded until the end of the trial. This  made it  

possible to directly examine the internal representation of the object. Moreover, in this                             

experiment participants did not have to actively perform a visual discrimination task on the        

object, providing a strong test for the automaticity of scene-driven object updating. To ensure           

that they still paid attention to the stimulus sequence, the object reappeared on 12.5% of trials. 

When the object did reappear, it was always oriented congruently . At the end of each run, 

participants had to report the number of reappearances within the run. The data from these 

catch trials was excluded from all subsequent analyses.  

As in Experiment 1, we trained linear classifiers on separate runs to discriminate the 

proximal shape of objects (wide or narrow, Figure 5A). In this case, the classifiers were trained 

on BOLD responses to visually presented objects without any background, and tested on BOLD 

responses to scenes with occluded objects, thus cross-decoding from visually evoked to purely 

top-down responses. We analyzed the same ROIs as in Experiment 1, EVC and LVC, again testing 

for robustness across varying numbers of included voxels.                                                                                                                              

 We found that the object’s proximal shape could be decoded above chance in visual 

cortex, consistently across a wide range of voxel numbers (Figure 5B). In LVC, decoding was                     

reliably above chance (mean classifier information across sub-ROIs: 0.061 ± 0.002 SEM, t(29) =            

2.96, p = 0.006, d = 0.54, CI = [0.02, 0.1]). On the other hand, decoding was not significantly 

above chance in EVC: mean classifier information across sub-ROIs was 0.064 ± 0.004 SEM, t(29) 

= 1.72, p = 0.095, d = 0.31, CI = [-0.01, 0.14]. However, a paired t-test comparing classifier 

information across the two ROIs revealed no significant difference between them (t(29) = 0.12, 

p = 0.902, d = 0.02, CI = [-0.06, 0.07]), suggesting that information about the occluded object’s 

orientation was distributed across the visual cortex, rather than localized in a specific region. 

This result shows that viewpoint changes in a scene can elicit expectations of object appearance 

in visual cortex, even when the objects are fully invisible.  

    

Discussion 

Vision in complex real-world environments often requires inferring the properties of 

temporarily invisible objects32. The ability of the human visual cortex to predict incomplete 

visual scenes has been studied extensively5,6,33, but it is still an open question how this ability 

can generalize to predictions based on complex regularities of the environment, such as its 3D 

geometry. Here, in two neuroimaging studies, we show that activity patterns in visual cortex 

reflect predictions of the appearance of an occluded object across viewpoint changes in a 3D 

scene.  

 In Experiment 1, we found that the proximal shape of objects (a wide versus narrow 

projection on the 2D image plane) in a rotating scene was decoded better when the objects 

cortex. In particular, classifier information was positive regardless of the number of included voxels in LVC, 

although the difference between LVC and EVC was not significant, indicating that information about object 

shape was present throughout visual cortex (see text for details). Left: distribution of classifier information, 

averaged across voxel numbers, for each participant and hemisphere. Right: classifier information, averaged 

across hemispheres, for each number of included voxels. Shaded regions indicate SEM across participants, and 

asterisks indicate significance after TFCE. * p < 0.05, ** p < 0.01  
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emerged from occlusion in an orientation that was congruent with the new scene viewpoint, 

compared to incongruent objects. This multivariate enhancement was accompanied by an 

overall reduced amount of (i.e., univariate) brain activation, consistent with the idea of 

sharpened representations of expected stimuli17,18. Interestingly, in Experiment 2, we found 

that these predictions of object appearance from scene viewpoint could elicit visual object 

representations in the absence of visual input. We found that the proximal shape of the rotated 

object (i.e., a wide versus narrow projection) could be decoded from visual cortex activity, even 

when the object remained fully occluded. These results show that temporarily invisible objects 

can evoke a visual representation, as informed by the surrounding (visible) scene context. To do 

so, the visual cortex capitalizes on the predictable way in which objects in the real world rotate 

coherently with the surrounding scene. Such seamless integration of visible and invisible 

information can be extremely useful in tracking objects across periods of invisibility, as is often 

required in daily life32. 

 In Experiment 1, the modulatory effect of scene-object congruency on orientation 

decoding was specific to EVC. Conversely, in Experiment 2, orientation decoding of the 

occluded object was found throughout visual cortex, but was more robust in LVC. This apparent 

discrepancy across experiments may reflect that purely top-down generated object predictions 

are represented relatively more coarsely, providing a ‘scaffold’ to modulate more fine-grained, 

stimulus-evoked responses in EVC through feedback projections. This interpretation is in line 

with the results of the coupling analysis of Experiment 1, showing that univariate activity in 

occipitotemporal cortex (in the proximity of motion- and object-selective regions) was more 

strongly coupled with congruent than incongruent orientation decoding in EVC. This 

dissociation has been observed in previous studies as well: EVC has been implicated in a wide 

variety of cognitive, but visually-based, processes, including mental imagery34, working 

memory35, mental rotation36,37, tracking of occluded objects38, and intuitive physics39,40. All 

these cognitive operations share a fundamentally spatial nature: they require maintaining or 

manipulating visual information at a specific location in (retinotopic) space. On the other hand, 

very similar processes that are less spatially specific seem to involve LVC instead. For example, 

mental imagery only involves EVC when the location and scale of the stimulus to be imagined is 

clearly specified, and it involves LVC otherwise41. Similarly, the scene-driven modulation of a 

visible object’s perceived size in the Ponzo illusion42,43 occurs in EVC44,45, while the size of an 

object’s search template, a top-down signal without a specific position in the scene, is observed 

in LVC21.  

 The present work focuses on investigating the outcome of expectations based on scene 

context: a prediction of the object’s proximal shape. Future work should investigate the format 

of the representations that make these expectations possible. One possibility is that the scene 

is represented as a structural description in allocentric 3D coordinates46–48, and then translated 

back to retinotopic coordinates, leading to the egocentric 2D shape predictions we observed in 

our study. This kind of explicit coordinate transformation has been proposed to underlie spatial 

navigation and mental imagery49,50. Alternatively, predictions might be represented exclusively 

in terms of egocentric views, with no involvement of explicit 3D descriptions. Human behavior 

in spatial navigation tasks, for example, is consistent with scene representations in terms of 2D 

views51–53. Moreover, recent work has shown that objects’ proximal shape is represented 

explicitly in several tasks that involve 3D structure, such as mental rotation54,55 or searching for 
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objects at different depths in a scene21,56. Future studies could shed light on the 

representations underlying scene-driven predictions, for example by investigating how these 

predictions are affected by 3D features (such as the angle of rotation) and 2D features (such as 

egocentric motion patterns), as done in recent work on mental rotation54. 

Regardless of whether the representations that participants relied on in our study are 

based on egocentric views or 3D structure, our results suggest that humans can represent 

scene-object relations in a sufficiently rich manner to support predictions across changes in 

viewpoint. This extends a long line of empirical and theoretical work investigating how the 

internal representation of objects reflects their properties in the external world57–59. This 

includes the ability to mentally rotate objects60 or to simulate their physical dynamics61. It is 

possible that these internal representations also incorporate models of how objects interact 

with their context, including (but not limited to) how objects rotate concurrently with the 

surrounding scene. One way to efficiently process these kinds of spatial relations in complex 

scenes is to represent them in a hierarchical manner, linking scenes to the objects they contain, 

and linking objects to their parts. These kinds of hierarchical representations are extensively 

used in computer graphics and game engines62,63, and artificial intelligence research has 

addressed the problem of how they can be extracted from unstructured visual input64–69. Some 

evidence exists that humans process scenes hierarchically70–72, suggesting that a similar 

representation might underlie the present results. Alternatively, the link between scenes and 

objects might be represented in a ‘flat’, non-hierarchical manner, similar to relations between 

objects73 or social interactions between agents74. To adjudicate between these two 

alternatives, future studies could test whether the effect of scene rotation on object 

representations are asymmetric – scenes can rotate objects, but not vice versa, arguing for 

hierarchical representations, or symmetric, arguing for flat representations. 

In conclusion, the current findings show that the visual cortex can support predictions 

derived from an internal model of the world. These findings suggest that previously reported 

mechanisms for perceptual prediction generalize to complex and dynamic real-world 

environments. 

  

Methods 

Participants 

Participants were recruited through the Radboud University participant pool (SONA systems) 

and received a monetary reimbursement for their participation. They provided informed 

consent before the experimental session. The study was conducted in accordance with the 

institutional guidelines of the local ethical committee (CMO region Arnhem-Nijmegen, The 

Netherlands, Protocol CMO2014/288). For both studies, we aimed to collect a pre-determined 

sample size of 34, in order to achieve 80% power for detecting a medium-sized (d > 0.5) within-

subject effect with 80% power using a two-tailed one-sample or paired t-test. In Experiment 1, 

a total of 35 participants took part in the study (21 females, mean age = 24.1, SD = 4.4). In 

Experiment 2, a total of 34 participants took part, of which 4 were excluded due to not paying 

sufficient attention to the stimulus sequences, as measured through our simple task of counting 

object reappearances (Pearson’s correlation between true and estimated number of 

reappearances for each run). Specifically, participants were excluded when their average 

correlation was more than 2 inter-quartile ranges away from the first quartile. The final sample 
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size was then 30 participants (16 females, mean age = 25.2, SD = 8.5). These participants’ 

responses were positively correlated with the true values (mean r = 0.89, minimum = 0.39), 

with a majority (25/30) having correlations higher than 0.80, as shown in Figure S4. 

 

Apparatus 

Participants viewed the stimuli through a mirror mounted on the head coil of the scanner. In 

Experiment 1, stimuli were presented on a 32-inch BOLDscreen monitor (Cambridge Research) 

with 1920 x 1080 px resolution and 120 Hz refresh rate. The total viewing distance (eyes from 

mirror + mirror from screen) was 1206 mm. In Experiment 2, stimuli were presented on an EIKI 

LC-XL100 projector with 1024 x 768 px resolution and 60 Hz refresh rate, back-projected onto a 

projection screen (Macada DAP diffuse KBA) attached to the back of the scanner bore. The total 

viewing distance was 1440 mm. In both experiments, stimuli were presented using 

Psychtoolbox75 in MATLAB R2017b. Participants provided responses on a HHSC-2x4-C button 

box. 

 

Stimuli 

In both experiments, the stimuli for the main task and classifier training runs were 20 different 

indoor scenes (Figure S1) modeled in Blender 2.80 and rendered using the Cycles rendering 

engine for realistic lighting. The scenes all had the same layout (floor, two walls at a right angle 

and a main object in the center), but contained various additional objects, adjacent to the walls, 

and different textures on the walls and floors, to increase their perceptual variability. The 

central object was a couch for half of the scenes, and a bed for the other half. The retinal size of 

the central objects was approximately the same across scenes. For each scene, a range of 

viewpoints was rendered, by rotating the entire scene around the vertical axis (out of the image 

plane) between 0° and 90°, in steps of 5°. A subset of these viewpoints was presented on each 

trial. The two walls were oriented such that the scene was fully visible from all the viewpoints. 

The scenes were presented at the center of the screen with a size of 20.53 x 11.64 degrees of 

visual angle (dva), surrounded by a gray background. The occluder was a gray rectangle (same 

color as the background) which had the height and width of the largest possible view of the 

object in that particular scene (average size: 5.50 x 2.86 dva), plus a margin (horizontal: 1.08 

dva, vertical: 0.43 dva) to ensure the object was fully covered and its shadow was not visible, 

which would have provided a cue to its orientation. The fixation dot (radius: 0.1 dva, shown at 

the center of the central object, 3.24 dva below the center of the screen) was always visible on 

top of the images.  

 In Experiment 1, the stimuli for the classifier training runs were the final views of the 

objects shown in the Main Task runs, with the scene background (Figure 2A). In Experiment 2, 

they were the same objects but without the scene background (Figure 5A). The size of the 

stimuli was the same as in the Main Task runs. 

 

General procedure 

In Experiment 1, before the fMRI scanning session, participants performed a short practice 

session (40 trials, around 10 minutes duration) to familiarize themselves with the main task of 

the experiment. During this session, they received feedback on every trial, as well as seeing 

their overall accuracy at the end of the session. After the practice, they were also instructed 
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about the other tasks they would have to perform in the scanner (one-back task in the Classifier 

training and Functional Localizer runs). During the five-minute anatomical scan, they practiced 

the main task again, also with trial-by-trial feedback. In total, participants were in the scanner 

for 12 functional runs (~75 minutes). Each functional run began and ended with 15 seconds of 

fixation. 

In Experiment 2, given the less challenging task, there was no practice session. Before 

entering the scanner, participants were instructed about the main task they were going to 

perform and were shown example stimuli. They were also told that on some runs they would 

have to detect repeated images (one-back task in the Classifier training and Functional Localizer 

runs). During the five-minute anatomical scan, they practiced the main task, receiving feedback. 

Participants were in the scanner for a total of 13 functional runs (~70 minutes). One participant 

included in the final sample (and one excluded participant) only completed 7 main task runs 

instead of 8. 

 

Procedure: main task runs 

In Experiment 1, participants completed 7 runs of the main task, each consisting of 48 trials 

(336 trials in total). Within each run, 36 trials (75%) featured the Congruent object orientation 

at the end of the stimulus sequence and the remaining 12 (25%) the Incongruent orientation. 

We chose to present Congruent orientations on a majority of trials because our previous 

behavioral work15 revealed that the behavioral accuracy difference between conditions was 

highest with this design (although the effect remained present even when the Incongruent 

trials outnumbered the Congruent trials). By choosing the design in which the effect was 

strongest, we maximized the power for uncovering the neural correlates of this behavioral 

effect. Both Congruent and Incongruent trials were equally divided among the 4 possible initial 

orientation/amount of rotation combinations (A30, A90, B30, B90).  

Crucially, the behavioral task that participants had to perform was fully orthogonal to 

the congruency manipulation: they did not have to explicitly judge whether the object 

remained in the same orientation relative to the beginning of the trial, or to explicitly predict its 

upcoming view after the occlusion period. Participants were told that their task pertains 

exclusively to the final viewpoint, but were nonetheless instructed to remain attentive during 

the whole stimulus sequence. Each trial (Figure 1) began with a fixation dot for 500 ms, 

followed by the initial view of the scene for 2000 ms. The scene then started rotating, in 3 

intermediate views, each shown for 500 ms. The object was fully occluded starting from the 

second of these intermediate views. The final view of the scene, with the object still occluded, 

was displayed for a randomly jittered time between 1500 and 2000 ms. The object then 

reappeared and was briefly flashed twice (with the scene background always present) for 50 ms 

each, with a 100 ms inter-stimulus interval in between. We refer to these two brief 

presentations of the object as the probes. On a given trial, the second probe was rotated 

clockwise or counterclockwise, with equal probability, relative to the first, and participants’ task 

was to indicate ‘clockwise’ or ‘counterclockwise’ using the index or middle finger of their right 

hand, respectively. Participants had a maximum of 1500 ms to respond, after which the 

experiment would skip to the next trial and the current trial would be counted as missed. The 

duration of the initial fixation period for the following trial was adjusted to compensate for 

participants’ response time on the current trial, to ensure that the overall duration of each run 
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was constant. The first probe’s orientation was randomly sampled from a normal distribution 

centered around the Congruent or Incongruent orientation (depending on the current trial’s 

condition), with a standard deviation of 1°, to add a small amount of jitter, and then rounded to 

the nearest integer. The second probe was rotated, clockwise or counterclockwise, relative to 

the first by an angle that was titrated using a 2-down 1-up staircase, to keep the task difficulty 

constant across participants. To ensure that the visual stimuli in Congruent and Incongruent 

trials did not differ, and thus avoid any stimulus-related confounds, a single staircase was used 

across both Congruency conditions, allowing for accuracy differences between conditions. 

Unlike in the practice session, participants did not receive feedback on every trial, to avoid any 

possible effects on the fMRI response of differing feedback between Congruent and 

Incongruent conditions. Instead, their overall accuracy within a run was displayed at the end of 

the run. 

In Experiment 2, participants completed 8 runs of the main task (40 trials each) for a 

total of 320 trials. The stimulus sequence and durations were the same as in Experiment 1. The 

main difference was that on a majority of trials, the central object was not shown again after 

the occlusion period. It was shown only on 40/320 trials (12.5%), randomly spread across the 8 

runs (between 2 and 10 per run). On these trials, the occluder disappeared, revealing the object 

in the final orientation (there was no congruency manipulation in this experiment) for 200 ms. 

To encourage participants to pay attention to the stimulus sequence, at the end of each run 

they were asked to report on how many trials the object reappeared. An adjustable number 

(initially set to 0) was shown on screen and participants could increase it using their middle 

finger or decrease it using their index finger. To confirm their estimate, they used their ring 

finger. They were then shown both their estimate and the correct number as feedback.  

 

Procedure: classifier training runs 

The purpose of the classifier training runs was to estimate benchmark response patterns to the 

central objects used in our main task, without the context of the whole rotation sequence.  

In Experiment 1, the images displayed in the training runs were the final frames of the 

sequences shown in the main task. They were presented in mini-blocks corresponding to the 4 

possible object orientation/scene rotation combinations (A30, A90, B30, B90 – see Figure 2A). 

Each mini-block consisted of 18 images (different scene exemplars, all in the same 

orientation/rotation combination), with each image presented for 350 ms and followed by a 

400 ms blank interval (each mini-block lasted 13.5 s in total). After a series of 4 mini-blocks (54 

s), a longer blank interval was shown for 6.75 s. Participants’ task was to press any button 

whenever the exact same image was repeated twice in a row (one-back task). Each run included 

20 mini-blocks (divided into 5 blocks), and participants completed 3 training runs. 

In Experiment 2, the objects in the training runs were shown without any scene 

background (Figure 5A). Aside from the absence of a background, the position and size of the 

stimuli was the same as in the main task runs. Different object exemplars were grouped in mini-

blocks by their proximal shape, such that a given mini-block contained exclusively wide or 

exclusively narrow objects, including different initial orientation and rotation combinations 

(wide mini-blocks included A30 and B90, narrow mini-blocks B30 and A90). Each mini-block 

consisted of 9 images (6.75 s in total), each image being shown for 350 ms and followed by a 
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400 ms blank interval. After a series of 8 mini-blocks (54 s), a longer blank interval was shown 

for 6.75 s. Participants performed the same one-back task as in Experiment 1. 

 

Procedure: functional localizer runs 

In both experiments, participants completed 2 runs of a functional localizer scan used for ROI 

voxel selection. Stimuli from the 4 stimulus categories (objects, scrambled objects, faces and 

scenes) were shown in separate mini-blocks, each lasting 15 s and comprising 20 unique 

images. Each image was shown for 450 ms and followed by a 300 ms blank. Each localizer run 

included 16 mini-blocks (divided into 4 blocks, each containing all 4 stimulus categories in 

varying order). Participants performed the same one-back task as in the classifier training runs. 

The stimuli used in the functional localizer runs in both experiments were the same as those in 

a well-established functional localization study76. They included images from 4 different 

categories: objects, scrambled objects, faces and scenes (houses or landscapes). They were 

shown against a uniform gray background with a size of 12 x 12 dva. 

 

Acquisition and preprocessing of fMRI data 

In Experiment 1, fMRI data were collected on a 3T MAGNETOM Skyra MR scanner (Siemens AG, 

Healthcare Sector, Erlangen, Germany) using a 32-channel head coil. Functional data was 

acquired using a T2*-weighted gradient EPI sequence, with 6x multiband acceleration factor (TR 

1s, TE 35.2 ms, flip angle 60°, 2x2x2 mm isotropic voxels, 66 slices). For the main task runs, 

404 images were acquired per run, 333 and 318 images for the classifier training and functional 

localizer runs, respectively.  

In Experiment 2, fMRI data were collected on a 3T MAGNETOM PrismaFit MR scanner 

(Siemens AG, Healthcare Sector, Erlangen, Germany) using a 32-channel head coil. Functional 

data was acquired using a T2*-weighted gradient echo EPI sequence, with 6x multiband 

acceleration factor (TR 1s, TE 34 ms, flip angle 60°, 2x2x2 mm isotropic voxels, 66 slices). For the 

main task runs, 315 images per run were acquired, and 333 and 318 images for the classifier 

training and functional localizer runs, respectively. 

In both experiments, at the start of the scanning session, a high-resolution T1-weighted 

anatomical scan was acquired using an MPRAGE sequence (TR 2.3 s, TE 3.03 ms, flip angle 8°, 

1x1x1 mm isotropic voxels, 192 sagittal slices, FOV 256 mm). The data was preprocessed using 

SPM1277 functions through the Nipype 1.6.078 interface in Python. The functional volumes were 

fieldmap-corrected, spatially realigned, co-registered with the anatomical image, normalized to 

MNI 152 space using the template provided in SPM, and smoothed with a 3x3x3 mm FWHM 

Gaussian filter. 

 

General Linear Model (GLM) estimation 

The responses evoked by each of the stimulus types relevant to our analyses were modelled 

using general linear models (GLMs) in SPM12, through the Nipype 1.6.0 interface. In both 

experiments and in all GLM analyses, time series were convolved with the canonical 

hemodynamic response function (HRF) provided in SPM12. 

 In Experiment 1, in the main task, the onsets of the final object views were modelled as 

impulse functions. We included regressors for each combination of object orientation and final 

scene rotation (A30, A90, B30, B90), separately for the Congruent and Incongruent trials. Since 
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the Congruent condition included 3 times as many trials as the Incongruent condition, 

estimating beta weights using all trials would have led to a higher signal-to-noise ratio, and 

consequently a spuriously higher decoding accuracy. To correct this imbalance, we randomly 

split the 36 Congruent trials within each run into 3 subsets of 12 trials each (thereby matching 

the number of Incongruent trials). The random splits were determined using a specified seed 

(different for each subject and run) for reproducibility. Each of the splits was modelled as a 

separate condition in the GLM, and all subsequent analyses were performed separately on each 

split, and then averaged. In the classifier training runs, individual mini-blocks were modeled as 

boxcars. As in the main task runs, we included regressors for each object orientation/scene 

rotation combination, yielding one beta weight map per condition, per mini-block, per run. For 

the univariate analysis, we modelled the onsets of the final object views as impulse functions. 

We only included regressors for the two congruency conditions, Congruent and Incongruent, 

obtaining two beta weight maps per run.  

 In Experiment 2, in both the main task and classifier training runs, we only included 

regressors for the two proximal object shapes (Wide and Narrow), rather than the four 

separate orientation/rotation combinations. The reason for this was that the objects in the 

training runs were presented without any background, removing the need to match images by 

background in the GLM and MVPA analyses (Figure 5A, also see Multivariate Pattern Analysis). 

In the training run mini-blocks, objects were also grouped by their proximal shape regardless of 

the specific orientation-rotation combination. In the main task runs, the entire period from the 

onset of the final scene view to its offset was modeled as a boxcar, as we assumed a prediction 

of the object in its updated orientation would be present throughout this period. Trials in which 

the object reappeared after the occlusion period were excluded from the analysis. We 

estimated one beta weight map per run per condition (Wide and Narrow). In the classifier 

training runs, each mini-block was modeled as a boxcar. We estimated one beta weight map 

per mini-block, per run, per condition. 

 In the functional localizer runs of both experiments, mini-blocks belonging to the 4 

stimulus categories (objects, scrambled objects, faces and scenes) were modeled as boxcars, 

yielding one beta weight map per condition per run. 

 All GLMs included 6 motion parameters and one run-based regressor as nuisance 

regressors. As participants were performing a one-back task in the classifier training and 

localizer runs, these runs included an additional nuisance regressor synchronized to 

participants’ button presses (modeled as impulse functions). 

 

Regions of interest definition 

To select voxels for inclusion in our visual cortex ROIs (in both experiments), we used subject-

level t-contrast maps estimated using data from the functional localizers, contrasting stimuli 

(both objects and scrambled objects) against the fixation baseline. These maps were 

intersected with an anatomical mask corresponding to Brodmann areas 17 and 18 

(corresponding to areas V1 and V279) for EVC, and Brodmann areas 19 and 37 for LVC80. Each 

participant’s map, in each hemisphere, was then thresholded to only include the top N most 

responsive voxels in the stimulus vs. baseline contrast, as measured by the t-statistic. The 

number of selected voxels (N) ranged from 100 to 6000 in steps of 100, creating 60 sub-ROIs 

per each ROI and hemisphere, with an increasingly liberal voxel inclusion criterion. 
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Multivariate pattern analysis 

Our cross-decoding analysis consisted of training linear classifiers on benchmark responses 

(beta weights) to objects devoid of any context (sequence), obtained from the classifier training 

runs, and testing them on responses to objects appearing at the end of the rotation sequence 

in Experiment 1 (Figure 2A), and on responses to scenes with fully occluded objects in 

Experiment 2 (Figure 5A).  

In Experiment 1, in order to decode the stimulus feature of interest – proximal object 

shape (wide vs. narrow), we separately trained classifiers to discriminate between the A and B 

object orientations embedded in scenes rotated by 30 or 90 degrees (Figure 2A), which 

corresponds to discriminating conditions A30 and B30, and A90 and B90, in such a way as to 

classify the object’s shape against a matched background. The accuracies of classifiers trained 

on the two backgrounds were then averaged. The 3 splits of Congruent trials (see GLM analysis) 

were also decoded separately, and accuracy was then averaged across them. Importantly, the 

labels of the beta weights corresponding to Incongruent trials in the main task runs 

corresponded to the object orientation that was actually presented on the screen, not the one 

expected given the context, as our goal was to assess how the same visual stimuli are processed 

differently depending on the context. 

 In Experiment 2, as objects were displayed without any background in the classifier 

training runs, we did not need to implement the background-matched decoding. Additionally, 

different views that resulted in the same proximal shape were grouped together in the same 

mini-blocks of the classifier training runs (e.g. A30 and B90 were grouped together as Wide). 

Classifiers were trained to discriminate between Wide and Narrow objects, and tested on 

responses to the final views of the scene in the main task runs, where the object was occluded. 

As the object only reappeared on a small minority of trials, which were excluded from further 

analyses, these response patterns solely reflected participants’ expectations about the proximal 

shape of the occluded object. 

Besides training on the classifier training runs and testing on main task runs, decoding 

was also done in the opposite direction (training on main task runs, and testing on classifier 

training runs) and decoding performance was averaged across directions. This was done 

because factors unrelated to the task or stimulus, such as different signal-to-noise ratios, can 

lead to asymmetries between cross-decoding directions81. We thus averaged across directions 

to obtain a more robust estimate of the stimulus-related information present in multivariate 

activation patterns. The training and testing datasets were separately z-scored before decoding. 

Multivariate pattern analysis (MVPA) was conducted using linear support vector 

machines (SVMs) implemented in Scikit-learn82 and PyMVPA83. As a measure of decoding 

performance, and thus information content in a given brain region, we used the continuous 

distance from the SVM’s hyperplane (i.e., distance to boundary) rather than discrete 

classification accuracy. Continuous measures of the distance between brain activation patterns 

have been found to be more reliable than discrete ones, likely due to the lossy compression 

inherent in binary classification outcomes84. Specifically, we used the following continuous 

measure of decoding performance (which we call classifier information): 
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Where di’s are the z-scored (across test samples) distances from the hyperplane, li’s are the true 

labels (either -1 or 1) for each sample, and n is the number of samples in the test set. 

Intuitively, this measure corresponds to the average match between each distance from bound 

and the corresponding ground-truth label, i.e. the degree to which the distance is positive when 

the target is positive, and negative when the target is negative. This measure is greater than 

zero when classification is above chance. The purpose of z-scoring the distances is to remove 

potential differences between SVMs trained and tested on different data, such as different 

hemispheres or decoding directions. If the signal-to-noise ratio is higher when training on main 

task runs, for example, distances in this condition will be higher overall, leading to a 

disproportionate contribution of this condition when averaging across conditions. Similarly, 

averaging distances across test samples, rather than summing them, allows us to directly 

compare classification performance in different conditions, which might have different 

numbers of samples, and average across them. Specifically, it is necessary for averaging across 

decoding directions. Classifier information was computed for each sub-ROI within EVC and LVC, 

in each hemisphere, and each subject. It is important to note that this measure is closely linked 

to classification accuracy, and all our results were consistent, albeit noisier, when using 

classification accuracy instead of classifier information (Figure S3). 

 

Significance testing 

To statistically test differences in classifier information between conditions (Experiment 1) and 

absolute amounts of classifier information (Experiment 2), we used two approaches. (1) To 

avoid making assumptions regarding the appropriate numbers of voxels to include in the 

analysis for each ROI, we averaged classifier information across numbers of included voxels 

(sub-ROIs) for each subject and ROI. In Experiment 1, this summary measure was compared 

between the Congruent and Incongruent conditions with a two-sided paired-sample t-test. In 

Experiment 2, it was compared against zero with a two-sided one-sample t-test. These 

statistical tests, as well as the test on behavioral accuracy differences in Experiment 1, were run 

using Pingouin85. (2) To assess the robustness of (differences in) classifier information across 

numbers of selected voxels, we used threshold-free cluster enhancement (TFCE)86. TFCE boosts 

the magnitude of a statistic based on its extent across neighboring samples (in this case, sub-

ROIs with similar numbers of voxels), reflecting the assumption that any signal in the data 

should be smooth across consecutive datapoints. This measure is then compared with a null 

distribution generated by randomly shifting the signs of each participant’s 1D map (classifier 

information across sub-ROIs). This null distribution has the same variance and autocorrelation 

as the original signal. The shuffling procedure was performed 10,000 times. A z-score then 

expresses how likely each observed TFCE values is, given the TFCE values in the 10,000 

permuted (null) data sets, thus implicitly correcting for multiple comparisons. TFCE was 

computed using the MNE toolbox87. 
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Univariate analysis 

In Experiment 1, we used a univariate analysis to estimate differences in the overall response 

elicited by Congruent and Incongruent trials. This was done within the main visual ROIs, as well 

as across the whole brain. For the within-ROI analysis in visual cortex, we used the same sub-

ROIs as in the multivariate analysis, to directly compare the amount of information with the 

level of activation in the same voxels. We averaged the beta weights across voxels within each 

sub-ROI (number of selected voxels), each condition (Congruent and Incongruent) and each 

participant, separately in EVC and LVC. The averages across sub-ROIs in the Congruent and 

Incongruent conditions were then compared using a two-sided paired t-test. For the whole-

brain analysis, we ran a second-level contrast (one sample two-sided t-test against zero across 

participants) with a = 0.001 (False Positive Rate corrected), and a cluster threshold of 10 voxels, 

using the threshold_stats_img function in Nilearn88. 

 

Information-activation coupling analysis 

The goal of the information-activation coupling analysis was to reveal regions of the brain in 

which univariate activation was more strongly correlated with the presence of multivariate 

information in EVC in Congruent than Incongruent trials. To compute the average timecourses 

of each voxel in the brain for each condition of interest, we used GLMs with a finite impulse 

response (FIR) basis function89. We thus obtained, for each condition and run, the BOLD 

response for 10 time bins (one second each) after stimulus onset (final object appearance). To 

extract multivariate decoding timeseries, the BOLD activation patterns of EVC in each time bin 

were fed to an SVM classifier trained to distinguish wide vs. narrow mini-blocks in the training 

runs. The decoding procedure was the same as in the main multivariate analysis of Experiment 

1. This yielded a classifier information score for each time bin for the Congruent and 

Incongruent conditions. We computed the Pearson’s correlation of these multivariate decoding 

time series with the time-resolved activation (averaged across runs) in each voxel of the brain, 

for Congruent and Incongruent conditions. This resulted in two whole-brain maps of 

correlations for each subject, for the Congruent and Incongruent conditions. To assess 

robustness to voxel inclusion (for the multivariate decoding in EVC), the whole analysis was 

repeated for different numbers of included voxels (based on activation in the stimulus vs. 

baseline contrast, across both hemispheres): 500, 600, 700, 800, 900, and 1000 voxels. The 

resulting whole-brain maps were averaged. The maps for the Congruent and Incongruent 

conditions were then compared using a paired-samples t-test, to find voxels that were 

significantly more correlated with multivariate classification in the Congruent than the 

Incongruent condition. As we were exclusively interested in clusters that showed more coupling 

for Congruent than Incongruent trials, we ran a one-sided test. Apart from this, we used the 

same Nilearn function and parameters as in the univariate analysis of Experiment 1 (see 

Univariate analysis). 

 

Data availability 

The preprocessed fMRI data (beta values) used in all the analyses, as well as the raw 

(anonymized) data, the behavioral data and visual stimuli, will be made available on Figshare 

upon publication. 
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Code availability 

All code used to preprocess and analyze the data will be released in a public Github repository 

upon publication. 
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Supplementary Material 

  

Figure S1. The 20 scene exemplars used in the study.   
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Figure S2. Univariate activation (mean beta value) in EVC for Congruent and Incongruent trials, across 

numbers of included voxels. Univariate activation did not differ in EVC between Congruent and Incongruent 

trials, indicating that the increased decodability of object information did not derive from an increase in 

overall activation. See Figure 2B in the main text for the corresponding multivariate results. 
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Cluster ID X Y Z Peak Stat Cluster Size (mm3) 

1 -6.0 -68.0 56.0 5.064 768 

1a -10.0 -62.0 52.0 4.354  

1b -6.0 -68.0 62.0 3.949  

1c -14.0 -66.0 62.0 3.601  

2 36.0 -72.0 42.0 4.804 1392 

2a 34.0 -56.0 50.0 4.189  

2b 40.0 -64.0 40.0 4.092  

2c 34.0 -58.0 42.0 3.987  

3 -24.0 -66.0 44.0 4.767 816 

4 8.0 -70.0 54.0 4.728 840 

4a 22.0 -66.0 54.0 4.136  

5 -22.0 -40.0 -8.0 4.590 96 

6 28.0 -56.0 36.0 4.388 80 

7 16.0 -80.0 -32.0 4.231 88 

8 -26.0 -6.0 52.0 4.207 104 

9 26.0 -4.0 50.0 4.185 640 

9a 26.0 6.0 60.0 4.003  

9b 22.0 12.0 54.0 3.819  

10 -26.0 8.0 58.0 4.164 144 

11 -34.0 -54.0 46.0 4.147 184 

12 -4.0 -78.0 -24.0 4.132 88 

13 -30.0 -76.0 32.0 4.076 192 

14 -56.0 -54.0 0.0 4.042 120 

15 -26.0 -60.0 54.0 4.025 216 

16 20.0 -56.0 24.0 4.001 120 

17 -38.0 -44.0 50.0 3.941 440 
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17a -40.0 -36.0 48.0 3.932  

18 38.0 10.0 34.0 3.841 120 

19 60.0 -50.0 12.0 3.792 192 

 

  

Table S1. Clusters showing a significantly stronger response for Incongruent relative to Congruent trials in 

Experiment 1.  
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Cluster ID X Y Z Peak Stat Cluster Size (mm3) 

1 40.0 -64.0 -4.0 4.559 96 

2 50.0 12.0 14.0 4.077 128 

3 36.0 -72.0 28.0 4.050 96 

4 48.0 -58.0 10.0 3.934 128 

5 -44.0 -68.0 6.0 3.842 168 

6 54.0 -64.0 -2.0 3.734 136 

7 50.0 -72.0 2.0 3.698 80 

8 4.0 4.0 56.0 3.607 80 

9 46.0 -78.0 2.0 3.551 80 

 

  

Table S2. Clusters showing a significantly higher correlation on Congruent vs. Incongruent trials with 

multivariate decoding time courses in EVC (information-activation coupling analysis) in Experiment 1. This 

analysis revealed clusters in bilateral higher-level visual cortex, and in parietal, premotor and inferior frontal 

cortex, that were implicated in the enhancement of object information in EVC. 
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Coordinates: (40, -64, -4) 

Name z-score Posterior prob. Func. conn. (r) Meta-analytic coact. (r) 

visual motion 8.56 0.9 0.34 0.37 

v5 6.87 0.86 0.38 0.42 

motion 6.69 0.78 0.42 0.4 

mt 6.15 0.83 0.4 0.43 

visual 5.65 0.67 0.67 0.58 

occipital 5.63 0.7 0.62 0.52 

fusiform 5.16 0.71 0.38 0.34 

objects 4.51 0.71 0.42 0.41 

occipito temporal 4.28 0.78 0.36 0.36 

object 4.16 0.69 0.41 0.38 

 

 

Coordinates: (50, 12, 14) 

Name z-score Posterior prob. Func. conn. (r) Meta-analytic coact. (r) 

inferior frontal 7.08 0.68 0.24 0.24 

premotor 6.94 0.71 0.26 0.42 

imitation 6.7 0.84 0.11 0.15 

handed 6.15 0.75 0.04 0.18 

broca 5.64 0.76 0.11 0.13 

ventral premotor 5.38 0.77 0.2 0.31 

basal ganglia 5.27 0.71 0.11 0.2 

ganglia 5.24 0.71 0.11 0.2 

inferior 5.22 0.63 0.26 0.24 

posterior inferior 5.22 0.81 0.09 0.09 
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Coordinates: (36, -72, 28) 

Name z-score Posterior prob. Func. conn. (r) Meta-analytic coact. (r) 

spatial 6.07 0.7 0.39 0.39 

parietal occipital 6.05 0.84 0.06 0.06 

visuo 5.27 0.8 0.18 0.13 

navigation 5.26 0.84 0.2 0.19 

parietal 5.15 0.65 0.4 0.44 

occipital 5.02 0.67 0.51 0.3 

parietal frontal 4.79 0.79 0.19 0.19 

relational 4.63 0.82 0.02 0.05 

visuo spatial 4.54 0.83 0.1 0.09 

lateral occipital 4.53 0.76 0.3 0.19 

 

 

  

Table S3. Top 10 terms associated, in the Neurosynth meta-analysis platform, with the peak coordinates of the 

positively correlated clusters revealed by the information-activation coupling analysis. It can be seen from these 

terms that the first two clusters are associated with higher-level visual cortex, particularly motion and object 

processing, while the third is associated with inferior frontal and premotor cortex. The full tables of these and 

other clusters can be accessed at https://neurosynth.org/locations/x_y_z/, where x, y, and z are the peak 

coordinates of the relevant cluster (retrieved 25/11/2024). 
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Figure S3. Multivariate decoding results of Experiment 1 (left) and Experiment 2 (right) when using decoding 

accuracy as a measure of information rather than classifier information. See Figures 2B & 5B in the main text 

for the corresponding plots using classifier information. 
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Figure S4. Accuracy in the simple recall task of Experiment 2 for each participant, measured as the Pearson’s 

correlation between participants’ estimates and the true number of object reappearances. Points highlighted 

in red indicates outliers (participants who were more than two inter-quartile ranges away from the first 

quartile), which were excluded from the analysis. The boxplot indicates first, second (median) and third 

quartile, and the whiskers are drawn until the farthest point within two inter-quartile ranges from the first 

quartile, or the minimum among the included participants.  
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Figure S5. Results of Experiment 2 without any participant exclusion. See Figure 5B in the main text for the 

corresponding results with participants exclusions. 
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