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Our visual environment is relatively stable over time. An optimized visual system could capitalize on this by devoting less represen-
tational resources to objects that are physically present. The vividness of subjective experience, however, suggests that externally
available (perceived) information is more strongly represented in neural signals than memorized information. To distinguish between
these opposing predictions, we use EEG multivariate pattern analysis to quantify the representational strength of task-relevant
features in anticipation of a change-detection task. Perceptual availability was manipulated between experimental blocks by either
keeping the stimulus available on the screen during a 2-s delay period (perception) or removing it shortly after its initial presentation
(memory). We find that task-relevant (attended) memorized features are more strongly represented than irrelevant (unattended)
features. More importantly, we find that task-relevant features evoke significantly weaker representations when they are perceptually
available compared with when they are unavailable. These findings demonstrate that, contrary to what subjective experience suggests,
vividly perceived stimuli elicit weaker neural representations (in terms of detectable multivariate information) than the same stimuli
maintained in visual working memory. We hypothesize that an efficient visual system spends little of its limited resources on the
internal representation of information that is externally available anyway.
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Introduction
The brain is the most energy-demanding organ in the human
body, accounting for ∼20% of total energy consumption
(Magistretti and Allaman 2015). Important cognitive processes
implemented by neural activity are metabolically costly and
therefore need to be highly optimized. One of these crucial pro-
cesses is working memory, often defined as a short-term storage
for information that is no longer available (Baddeley 1992). Work-
ing memory is surprisingly limited, with the average person only
being able to remember around 3–5 objects depending on their
complexity and the task context (Cowan 2010). This limitation is
often explained by a resource bottleneck, further emphasizing the
need for efficient distribution of resources in the brain (Cowan
2010). Various lines of research have indeed suggested that
storing information in working memory is an energy-demanding
process. For instance, poor performers in a working memory
task show higher metabolic expenditure as compared with good
performers, an effect that was specific for memory load (Backs
and Seljos 1994). Furthermore, the pupil, commonly interpreted
as a marker of cognitive load or effort, shows greater dilation
with increasing working memory load as well as perceptual
load (Kahneman and Beatty 1966; Just et al. 2003; Alnæs et al.
2014; Castaldi et al. 2021). Given that representing information
incurs such costs in terms of capacity and effort, the visual
system potentially developed sophisticated strategies to decide
when active maintenance of such representations is necessary
and when not.

Interestingly, we find that in more ecological contexts, e.g.
when giving participants the choice on how many items to encode
in WM at a time, very little information is actually maintained
internally (Ballard et al. 1995; Somai et al. 2020; Draschkow et al.
2021; Sahakian et al. 2023). These findings suggest that the brain
uses its limited representational resources sparsely, supporting an
energy-efficient theory of working memory (Somai et al. 2020; Van
der Stigchel 2020). This account predicts that only the minimal
amount of information is stored to the largest effect. Importantly,
however, this minimal amount of information that we decide to
store internally in order to perform a certain task was shown to be
dependent on several environmental factors such as locomotive
demands (Draschkow et al. 2021) and time (Somai et al. 2020;
Sahakian et al. 2023). When large head movements are required
between the encoding and retrieval of single objects in working
memory, participants tend to encode more items in between
movements, thus optimally balancing the relative energy costs
of movement and storage (Draschkow et al. 2021; Sahakian et al.
2023).

Our work falls into a larger movement, suggesting to study
internal representations in the context of embodied cognition
(O’Regan 1992; Ballard et al. 1995; Van der Stigchel 2020). These
theories highlight the need to study mental processes, particularly
working memory, in their interaction with an energy-dependent
physical body and its environment. Such theories lead to a clear
prediction: fewer resources should be allocated to the internal
representation of stimuli that stay physically available in the
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outside world as compared with stimuli for which perceptual
availability is temporally limited. Crucially, at the neural level,
this leads to the counterintuitive prediction that vividly perceived
stimuli should be represented less strongly than invisible but
remembered stimuli. Here, we aimed to directly test this predic-
tion by investigating how much information, as revealed by mul-
tivariate pattern analysis in the electroencephalography (EEG),
is stored internally when visual information remains physically
available in the external world.

Traditionally, visual perception has often been characterized
as nearly unlimited in its capacity, an intuition that is doubtlessly
influenced by our incredibly rich subjective experience of the
world. Representing information necessarily costs resources,
however, and converging evidence suggests that the brain’s
capacity to represent currently available and no longer available
information is equally limited, potentially due to a shared
attentional resource (Tsubomi et al. 2013; Lapierre et al. 2017).
Specifically, Tsubomi and colleagues presented participants with
a classical change detection task in which several colored objects
were either presented shortly (memory/absent condition) or
for an extended period of time (perception/present condition).
Importantly, in the present condition, there was no empty delay
interval between sample and probe, and hence, the relevant visual
information stayed continuously physically available in the out-
side world. Surprisingly, the authors reported that performance
in both conditions was identical and that the contralateral delay
activity (CDA), a common electrophysiological marker of working
memory capacity, was indistinguishable between conditions.
They conclude that representational capacity limitations are
similar for information that stays perceptually available as
compared with information that is only briefly available. On
the one hand, this shows that efficient resource management
seems equally necessary when information stays perceptually
available, supporting the idea that physically available stimuli
should be represented less strongly. Simultaneously, however,
the presence of the CDA could be interpreted as evidence that
perceptually available stimuli were represented equally strong
in both conditions, counter to the idea that availability should
modulate representational strength. It is currently not clear if the
CDA directly reflects the actual storage of information in working
memory or if it reflects an attentional process that can also be
found, e.g. during multi-object tracking (Drew and Vogel 2008;
Drew et al. 2012, 2013). These limitations—that are inherent to
univariate response measures—motivated our decision to use
multivariate pattern analysis (MVPA) to quantify the multivariate
evidence of internal representations when stimuli were perceived
versus when they were memorized. Notably, visual perception
and visual working memory have been hypothesized to rely
on overlapping populations, a claim usually referred to as
the sensory recruitment hypothesis (Ester et al. 2009, 2016;
Serences et al. 2009). This view also finds support in the cross-
generalization of neural patterns during perception and during
memory maintenance of the same stimuli (e.g. Harrison and Tong
2009; Rademaker et al. 2019). Stimulus-specific information could
therefore be expected to evoke similar patterns of neural activity,
irrespective of whether the stimulus is physically present or not.
Here, we test this hypothesis by quantifying the multivariate
evidence for identical stimulus features in the EEG signal, both
during perception and memory.

In addition to perceptual availability, we manipulated feature
relevance in our task. This served as a baseline against which we
could compare the effects of availability, as relevant information
should be represented more strongly than irrelevant information

(both for physically present and absent stimuli). The effect of
feature relevance on working memory representations has been
investigated in the past: previous work found stronger representa-
tions for task relevant as compared with task irrelevant features
(EEG: Bocincova and Johnson 2019; functional magnetic resonance
imaging (fMRI): Serences et al. 2009; Yu and Shim 2017). Here,
we were interested if the same holds true if object features stay
perceptually available for a prolonged period.

To summarize, the current study aims to reveal how percep-
tual availability influences the strength with which features are
represented in the brain; specifically, asking whether representa-
tions of perceptually available features will be represented more
strongly (in line with their more vivid subjective experience)
or less strongly (in line with a resource-efficiency stance). We
investigate this in a blocked 2 by 2 experimental designs in
which participants were presented with colored gratings. These
gratings were either presented for 150 ms (absent condition)
and hence had to be remembered or remained available on the
screen for an extended period of time (1,850 ms). In half of the
trials, participants were asked to compare the gratings’ color
(attend color condition) to a subsequent probe, in the other half
participants had to compare the spatial frequency (attend spatial
frequency condition). We used time-resolved multivariate pattern
analysis to decode the spatial frequency of the stimuli in all
4 conditions.

Our findings show that task relevance and stimulus availability
jointly modulate representational strength of visual information.
Specifically, we found that (i) perceptual availability decreased
the amount of multivariate evidence for a feature regardless of
its relevance for the task at hand, whereas (ii) task-relevance
increased the amount of multivariate evidence only for features
that were not perceptually available (i.e. maintained in memory).
These findings are particularly remarkable as stimulus features
in the present condition were directly attended and perceived and
hence appeared far more vivid as compared with when the same
feature was absent and thus maintained in working memory. We
conclude that the visual system efficiently evaluates how much
resources to dedicate to the representation of stimuli, and that
factors, such as perceptual availability and relevance, bias this
evaluation.

Materials and methods
Participants
A total of 26 participants (aged 21–30, 16 females) with normal
or corrected to normal vision enrolled in the experiment. None
of the participants reported a history of psychiatric diagnosis.
Informed consent forms were signed before the experiment. The
study was carried out in accordance with the protocol approved
by the Ethics Committee of the Faculty of Social and Behavioral
Sciences of Utrecht University and followed the Code of Ethics of
the World Medical Association (Declaration of Helsinki). Subjects
were compensated with 10 Euro/h.

Stimuli
Stimuli consisted of vertical gratings (diameter 10◦ dva) with
spatial frequency randomly selected from a set of 48 frequencies
on every trial [1 cpdva (cycles per degree visual angle) to 4 cpdva,
equally spaced] and were presented at fixation. Stimulus color
was selected randomly from a set of 48 colors drawn from a circle
in CIELAB color space (L = 54, a = 18, b = −8, radius = 59). A circular
patch around the fixation point with radius 0.5◦ dva (degree visual
angle) was cut out and the inner edges of the resulting annulus
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were blurred in order to prevent participants from basing their
spatial frequency judgment on the relative position of grating and
fixation cross. Similarly, we blurred the outer edges of the gratings
since spatial frequency judgments might be based on the patterns
of these sharp transition zones. Stimuli were presented on an LCD
display (27-inch, 2560 × 1440 resolution, 120-Hz refresh rate) using
the Psychophysics Toolbox running in MATLAB (MathWorks). Par-
ticipants were seated 58 cm away from the screen on a chinrest
to prevent excessive head movements.

Protocol
Participants performed a blocked delayed match-to-sample task
(Fig. 1). Participants were instructed to remember the spatial fre-
quency or the color of vertically oriented gratings and com-
pare them to the respective feature of the subsequent probe. At
the beginning of each block, participants were informed about
the relevant feature in this particular block (“Attend Color” ver-
sus “Attend Spatial Frequency”). Furthermore, participants were
informed if the sample would stay on the screen or be removed
during the delay interval (“Present Condition” versus “Absent
Condition”). In the present condition, the sample was presented
for a total duration of 1850 ms followed by an empty screen for
150 ms. In the absent condition, the sample was presented for
150 ms followed by an empty screen for 1,850 ms. The relevance
and presence were kept constant for the entire block. Hence,
participants had clear expectations on how long the stimuli would
be available, and 500 ms after the onset of the probe the fixation
cross turned green, instructing the participant to report if the
relevant feature was the same or different (50% probability) as
compared with the sample. Participants performed a total of 1,000
trials. The number of trials per condition was matched. To keep
the task equally difficult between all conditions, we used an
online staircase procedure (Psychtoolbox QUEST algorithm) that
was updating several psychometric functions based on perfor-
mance on every trial. The difference in spatial frequency and color
between sample and probe was chosen based on these dynamic
psychometric functions so that performance was approximately
at 75% in all conditions (1. Attend color short availability, 2.
Attend color long availability, 3. Attend SF short availability and 4.
Attend SF long availability). Within every condition, 5 psychome-
tric functions were used, 1 for color and 4 for the 4 bins of spatial
frequencies (1–1.75, 1.76–2.55, 2.56–3.25, 3.26–4 cpdva). We used
several psychometric functions for spatial frequency bins because
the “just noticeable difference” likely varies across different SF. At
the end of every block, participant received feedback in the form
of a percent correct report. At the beginning of the experiment,
participants performed a practice session comprising 5 trials of
each condition in which immediate feedback was provided.

Eye tracking recording and analysis
Gaze position was continuously tracked using an Eyelink 1000 (SR
Researcher) eye tracker. Eye tracker calibration was performed
at the beginning of the experiment and the gaze position was
sampled at 1,000 Hz. Saccades were extracted directly from the
EyeLink saccade detection algorithm. Per condition, we calculated
the average number of saccades per trial as well as the average
saccade amplitude.

For the Gaze position decoding analysis, we separated tri-
als (vertical and horizontal position over time) into 4 different
groups corresponding to the spatial frequencies used in the EEG
decoding procedure. We performed baseline correction (−500 to
0 ms relative to stimulus onset) on the signal to remove slow
drifts. Similar to the EEG decoding analysis, we divided the gaze

trials into 3 equal groups of which 2 served for training and
1 served as test set (3-fold cross-validation). MATLAB’s fitcecoc
function (SVM, one-versus-all) was used to fit linear classifiers
on 2 of the folds and test it on the 3rd fold. Training and testing
was performed on the same time point and was repeated 10
times, each time shuffling the trials that were divided into the
3-folds.

EEG recording and preprocessing
We recorded participants EEG using a 64 channel ActiveTwo
Biosemi system. Two additional electrodes placed on the outer
eye canthus and above the left eye recorded horizontal and
vertical eye movements. Data analysis was performed in MATLAB
using the Fieldtrip toolbox. Prior to all preprocessing steps, we
identified and removed bad channels via visual inspection. The
EEG data were then re-referenced to the average of channel T7
and T8, bandpass filtered between 0.01 and 80 Hz, and line noise
was removed using a DFT-filter (50 Hz). Thereafter, the data were
epoched from 1.5 s before sample onset to 3.5 s after sample onset.
Large muscle and head-movement-related artifacts were first
removed through visual inspection. Afterward, we performed an
independent component analysis (ICA) on the datasets separately
to remove eye-movement-related artifacts. Finally, the data were
down sampled to 100 Hz and absolute baseline correction was
performed (window −500 to 0 ms before sample onset). We
removed two subjects from the analysis due to a large number
of EEG artifacts (>25% trials removed) caused by excessive head
or eye movements during the experiment. All data is available on
request.

Multivariate pattern analysis
We decoded the spatial frequency of the sample stimulus based
on the scalp topographies of the ERP voltage using a similar proce-
dure as Bae and Luck (2018). We chose to train our decoders only
on trials in which participants provided correct responses as these
trials would reflect proper attention and memory allocation. The
number of trials per spatial frequency class was equalized before
training multivariate classifiers. Single trial ERPs were lowpass
filtered using an infinite impulse response butterworth lowpass
filter (cutoff frequency 8 Hz) and subsequently down sampled to
50 Hz. We decided to decode the spatial frequency from a selection
of 20 occipital channels (PO7, PO3, O1, Oz, POz, Iz, PO8, PO4, O2, P1,
P2, P3, P4, P5, P6, P7, P8, P9, P10, Pz) as we were mainly interested
in visual representations.

For every participant, we binned trials into 4 spatial frequency
classes of equal size. Trials in every class were divided into 3
equally sized groups and averaged, resulting in 3-folds that were
later used for 3-fold cross-validation. We used MATLAB’s fitcecoc
function to fit multiclass error correcting output code models
using support vector machines that were trained to distinguish
between 1 class and all others (one-versus-all). For every indi-
vidual separately, classifiers were trained on single timepoints
and received 2 samples from each of 4 SF classes consisting of
20 features in the form of EEG topography voltage (20 channels).
Classifiers were then tested on all timepoints using the remaining
fold (4 classes, 20 features). This procedure was repeated 3 times
with each fold serving as training and test set once, but never
as both simultaneously. In addition, we randomly shuffled the
trials that were averaged into each fold 10 times, each time
repeating the entire decoding procedure. The classifiers output
scores (distance-to-bound) were z-scored for normalization, mul-
tiplied with the true class labels (1 or −1), and then averaged for
individual timepoints.
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Fig. 1. Experimental paradigm. Participants performed a delayed match-to-sample task. In “compare spatial frequency” blocks, participants reported if
the spatial frequency of the probe differed from the sample or not. Similarly, in “compare color” blocks, participants compared the color of the probe
to that of the sample. The duration for which the sample was presented on the screen also varied in a blocked fashion, leading to 4 different types of
blocks (compare SF short availability, compare SF present, compare color short availability, compare color present).

Statistical analysis
We statistically assessed the diagonal distance-to-bound decod-
ing scores using a nonparametric cluster-based permutation test
(Maris and Oostenveld 2007). This was done first to assess if
significant above chance decoding could be observed within con-
ditions and second, using a different approach, to test if decoding
significantly differed between conditions. To statistically assess
decoding within a condition, we first simulated the performance
of our decoder that would be observed when guessing randomly.
Notably, all the following analyses were performed on the de-
signed distance-to-bound scores (positive for correct and nega-
tive for incorrect classification). For every participant and trial,
we randomly generated either a correct or a false classification
value by multiplying the entire distance-to-bound scores time-
series with 1 or −1 (thus preserving autocorrelations between
time-points in the null data). Distance-to-bound time-series were
averaged across trials within participants. We then ran t-tests
for every individual timepoint of the group level decoding time-
series and identified clusters of consecutive timepoints where the
P-value fell below α = 0.05. The t-values within the largest cluster
were summed to calculate the cluster-level t mass. This procedure
was repeated 10.000 times to generate a distribution of cluster-
level t masses. We then compared the experimentally observed
cluster-level t masses to the null-distribution and rejected the
null hypothesis (H0: distance-to-bound score is not significantly
different from 0) if their mass exceeded the 95% quantile of the
null-distribution. We performed an identical procedure for the
decoding based on gaze data.

In order to compare decoding scores between 2 experimental
conditions, we performed a similar statistical permutation
procedure. First, we calculated the veridical difference in cluster-
level t mass between 2 conditions. We then randomly swapped
50% of labels in both conditions and recalculated the difference in
largest cluster-level t mass. This procedure was repeated 10.000
times and generated the distribution that would be expected
under the null hypothesis (H0: distribution of distance-to-bound
score t-mass differences do not differ significantly between
conditions). The observed t-mass difference was compared with

the null-distribution and the null hypothesis was rejected if it
exceeded the 95% quantile.

Notably, the results of cluster-based permutation tests do
not indicate which time-points cause the observed difference
between conditions, but only allow to reject the null hypothesis
(H:0 both conditions come from the same probability distribution)
(Maris and Oostenveld 2007).

Behavioral performance (accuracy) was analyzed using a 1-way
ANOVA with factors availability and relevance.

Results
Behavior
A 2-way ANOVA with factors relevance (SF vs Color) and
availability (short availability vs long availability) revealed no
main effect of relevance (F(1,108) = 1.683, P = 0.197) or availability
(F(1,108) = 1.483, P = 0.226) and no interaction effect between
the two (F(1,108) = 0.037, P = 0.847), indicating that our staircase
procedure successfully equalized task difficulty between condi-
tions (Fig. 2). The average staircase values for SF, indicating the
difference in SF between memory and probe, were significantly
smaller in long vs short availability conditions (1–1.75 cpdva:
P < 0.05; 1.76–2.55 cpdva: P < 0.05; 2.56–3.25 cpdva: P < 0.05; 3.26–
4 cpdva: P < 0.05; 2-tailed t-test). Similarly, the average staircase
values for color were significantly smaller in the long availability
condition (P < 0.05 2-tailed t-test).

Effect of availability and relevance
We trained linear classifiers to quantify the time-resolved separa-
bility of the EEG signal, acquired during and after the presentation
of visual gratings with varying spatial frequencies and color.
Stimuli were presented either for 150 ms followed by a blank delay
interval of 1850 ms (short availability condition) or remained on
the screen for 1850 ms, followed by a blank delay interval of
150 ms. In the compare spatial frequency condition, participants
had to indicate if the probe had a similar or different SF as
compared with the sample. In the color condition, participants
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Fig. 2. Behavioral accuracy. Group average performance for all 4 condi-
tions. Error bars indicate standard error of mean.

indicated if the stimulus color was the same or different between
sample and probe.

Visual inspection of the MVPA temporal generalization
matrices, displaying decoding performance (distance-to-bound)
for all combinations of training and testing timepoints, indicated
that both relevance and availability modulated decodability
(Fig. 3A, B, D, E). Statistical analysis of the timepoint-by-timepoint
decodability in the latency range from 0 to 2,000 ms after stimulus
onset revealed a significant difference between conditions in
which SF was the relevant feature as compared with when it was
the irrelevant feature (Fig. 3G: short availability relevant vs short
availability irrelevant, cluster-based permutation test: P < 0.0001,
Fig. 3H: long availability relevant vs long availability irrelevant,
cluster-based permutation test: P < 0.0005). Decoding time-series
indicated that this was because SF could be decoded longer in
SF relevant (short: 1,180 ms, long: 660 ms) as compared with SF
irrelevant conditions (short: 380 ms, long: 420 ms).

Most importantly, we found significant differences between the
short availability and the long availability condition when SF was
relevant (Fig. 3F, cluster-based permutation test: P < 0.0125), most
likely due to prolonged decoding in the short availability condition
(short: 1,180 ms, long: 660 ms). This result is particularly striking
because participants were directly fixating and perceiving the
grating in the long availability condition for almost 2 s and were
aware that the spatial frequency was relevant for successful probe
comparison. There is a possibility that the difference observed
between these conditions is caused by the offset response of
the stimulus, which only occurred during the analysis time-
window of the short availability condition. When SF was not
relevant, however, no significant difference was found between
short and long availability conditions (cluster-based permutation
test: P > 0.1875, Fig. 3C). Thus, the offset response did not prolong
decodability when SF was irrelevant. Accordingly, it is unlikely
that the larger decoding cluster found in the short availability SF

relevant condition was solely caused by the offset of the sample
stimulus at time 150 ms.

To test whether the differences in multivariate evidence
between long and short availability conditions are caused by
a difference in the training set rather than differences in the
actual amount of information that is represented during the
testing timepoints, we conducted an additional analysis keeping
the training set stable. All trials began with the presentation
of a colored grating and long and short availability conditions
only differed in the timepoint at which this grating disappeared
(150 vs 1850 ms). Throughout the first 150 ms, all trials should
therefore be comparable between availability conditions and
classifiers should be able to capture (and generalize) the sensory
signals evoked by the stimulus onset (Harrison and Tong 2009;
Rademaker et al. 2019). This allowed us to pool both conditions
and train classifiers on the early timepoints of a single, instead
of 2 different training sets. The classification analysis was kept
identical to the within condition analysis, with the exception
that classifiers were trained on both conditions (attend SF,
long and short availability) and only on the timepoints from
the classification onset (Fig. 3F, 87 ms) to the disappearance
of the stimulus in the short availability condition (150 ms).
Subsequently, classifiers were tested on all timepoints, separately
for short and long availability conditions, to quantify how well
multivariate early sensory representations generalize to long and
short availability conditions. We only investigated the attend SF
condition as it was most relevant for our hypothesis. In line with
our previous findings, we found significant differences between
the short and long availability condition when SF was relevant
(Fig. 3I, cluster-based permutation test: P < 0.005), most likely
due to prolonged decoding in the short availability condition.
This result suggests that the differences in multivariate evidence
between availability conditions are not caused by differences in
the training set and/or fundamental differences in the neural
codes employed during perception and memory.

Given these results we conclude that the lack of sustained
decoding in the long availability relevant condition might be a
result of the long availability of the stimulus. As participants
were aware that the relevant feature will be perceptually available
in the external world for at least 1,850 ms, the visual system
likely has no incentive to engage large amounts of resources to
represent the feature. Alternatively, participants might have not
attended the stimulus in the “long availability” condition as much
as the only shortly available stimulus in the long availability
condition, leading to differences in decoding performance. Our
following analysis aimed to address this possibility.

Attention decoding
To test whether participants dedicated few or none of their atten-
tional resources to the long availability stimulus at its onset, we
conducted an additional decoding analysis. Our rationale was as
follows: if participants did not attend the stimulus in the long
availability condition because they were aware of its continuous
presence then the neural signals in long availability relevant and
long availability irrelevant conditions should indistinguishable.
Conversely, if participants attended the long availability stimu-
lus, then a classifier should be able to distinguish between long
availability relevant and irrelevant conditions.

We trained a new set of binary support vector machines to
distinguish between trials from the long availability relevant and
irrelevant conditions, regardless of their spatial frequencies. Clas-
sifiers successfully distinguished between long availability rele-
vance conditions as early as 187 ms after stimulus onset indi-
cating that attentional signals differed between them (Fig. 4A, C,
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Fig. 3. EEG decoding. A) Temporal generalization matrix reflecting classifier performance for long availability attend SF condition. Y-axis indicates
timepoints on which classifiers were trained. X-axis indicates timepoints on which classifiers were tested. Color axis indicates mean normalized
distance-to-bound scores. Green lines indicate onset (solid) and offset (dashed) of stimuli in the respective condition. B) Same but for short availability
attend color, D) long availability attend SF, and E) short availability attend SF conditions. C) Diagonal decoding performance (timepoint-by-timepoint)
of short availability (blue line) and long availability (orange line) attend color conditions. Colored areas indicate 95% confidence intervals. Colored
bars (blue, orange) indicate significant clusters of above chance decoding. Gray bars in the background indicate onset and offset of stimulus in short
availability and long availability conditions respectively. F) Same but for attend SF short availability (blue) and long availability (orange) conditions,
G) long availability attend SF (blue) and attend color (orange) conditions, H) short availability attend SF (blue), and attend color (orange) conditions.
I) Short availability attend SF (blue) and long availability attend SF (orange) conditions. Classifiers were trained on early timepoints (87–150 ms) of
pooled availability conditions (attend SF) and were tested on all timepoints for each condition separately.

t-tests). This finding, together with the fact that we found a
significant effect of relevance in the long availability condition,
suggests that the poor SF decoding found in the long availability
relevant condition was likely not caused by a lack of attention at
stimulus onset nor during the rest of the delay.

Classification of SF from gaze
Eye movements were previously shown to systematically track
orientation features held in working memory and can lead to
decodable artifacts in the EEG signal (Mostert et al. 2018). We
considered this possibility in the design of our task and choose to

use spatial frequency instead of spatial orientation as decodable
feature, as this would not provide spatial locations, such as ori-
entation endpoints to bias eye movements that were correlated
with our decoding variables. To test if this was successful, we
attempted to decode the SF from gaze position alone using a
similar decoding analysis as was used for the EEG decoding.
Classifiers could only briefly distinguish between different SF
based on gaze location (horizontal, vertical position) in the long
availability condition and only after 1,400 ms (Fig. 5). Notably, this
time-period does not overlap with the time-period of significant
EEG decoding (0–1180 ms). Our EEG decoding results are therefore
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Fig. 4. Attention EEG decoding. A) Temporal generalization decodability matrix for SF relevant versus irrelevant. Color axis indicates mean normalized
distance-to-bound scores. Green lines indicate onset (solid) and offset (dashed) of stimuli in the respective condition. B) Same but for short availability
condition. C, D) Diagonal decoding (timepoint-by-timepoint) of and long availability and short availability conditions. Colored areas indicate 95%
confidence intervals. Blue colored bars indicate significant clusters of above chance decoding.

unlikely to be a result of eye-artifacts caused by systematic eye
movements.

Discussion
Here, we investigated whether continuously physically present
stimuli lead to less distinguishable neural patterns as compared
with memorized stimuli using EEG multivariate pattern analysis
(MVPA). Our first hypothesis was that classifiers would perform
worse when stimuli remained visible as the visual system could
potentially externalize their storage to the physical world. This
was tested by changing the duration for which stimuli would
remain available on the screen in a predictable fashion. We were
particularly interested in the manipulation of perceptual avail-
ability because subjective experience and an efficient theory of
neural representations make opposite predictions on how avail-
ability should affect stimulus-specific activity. Using MVPA, we
found that stimulus features that remained available for a long
period were accompanied by significantly worse classifier perfor-
mance as compared with only shortly available features, although
the latter are commonly subjectively experienced as far less vivid.

This was also the case when classifiers were trained only on the
initial sensory transients which generalized to later periods in a
trial. We theorize that the reduction in classifier performance is
caused by a reduction in stimulus-specific activity, as the visual
system has no incentive to represent readily available visual
information. We also hypothesized that higher feature relevance,
an additional factor orthogonal to perceptual availability, should
lead to better classification accuracy. Our findings confirmed
this prediction, further supporting the idea that encoding and
maintenance of neural representations is influenced by various
task demands (Ballard et al. 1995; Alfandari et al. 2019; Somai et al.
2020; Van der Stigchel 2020; Draschkow et al. 2021; Sahakian et al.
2023).

The effects of relevance (within the long availability condition)
are in line with previous accounts of feature-based attention
during continued perception that generally show better decoding
for relevant as compared with irrelevant features, when stimuli
are perceptually available (Kamitani and Tong 2005, 2006; Moerel
et al. 2022). Importantly, the stimuli in these studies were either
flickering on and off (Kamitani and Tong 2005; Moerel et al. 2022)
or consisted of moving stimuli that continuously generated visual
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Fig. 5. Decoding spatial frequency from eye positions. Timepoint-by-timepoint decoding of SF from gaze positions. A) Long availability condition SF
relevant (blue) and irrelevant (orange). Colored areas indicate 95% confidence intervals. Gray bars in the background indicate onset and offset of stimulus
in short availability and long availability conditions, respectively. Colored bars (blue: SF relevant, orange: SF irrelevant) indicate significant clusters of
above chance decoding. B) Same but for short availability condition.

transients (Kamitani and Tong 2006). These design decisions were
likely made to increase the ability to decode the attended features
by maximizing the bottom-up sensory signal. Here, we show
that the initial sensory multivariate response is indeed modu-
lated by attention but additionally demonstrate that once the
sensory transient disappears, multivariate pattern classification
falls of sharply even though subjective visual perception remains
unchanged.

An additional MVPA analysis aimed at dissociating between
attentional conditions revealed that neural signals differed sig-
nificantly between trials where attention was directed toward the
spatial frequency and the stimulus color. This effect remained sig-
nificant while the stimulus was displayed in the long availability
condition but was short lived in the short availability condition.
Importantly, this result shows that the perceived stimulus (long
availability condition) was indeed attended throughout its pres-
ence and that the reduced classifier performance was not caused
by a lack of attention to the presented stimulus.

Can the effect of availability on decoding accuracy be explained
in terms of visual adaptation, a commonly observed reduction in
visually evoked activity over time (Webster 2015; Benda 2021)?
Visual adaptation has been observed on multiple time-scales
in the visual system and can occur in time ranges matching
the average duration of a fixation (∼400 ms, Akyuz et al. 2020;
Gutnisky and Dragoi 2008). Adaptation is highly prevalent in the
brain, leading to several proposed fundamental functions such
as efficient coding (Clifford et al. 2007; Wark et al. 2007), error
correction (Andrews 1967), and predictive coding (Chopin and
Mamassian 2012). While there are many EEG studies investigat-
ing long-term visual adaptation, we only found a single study
that decoded visual stimuli that were statically perceived for an
extended duration and that could therefore give insights on how
adaptation changes decoding performance over time (500 ms,
Carlson et al. 2011). Interestingly, although stimuli were relevant
on every trial, decoding accuracy sharply dropped off after around
500 ms approaching chance, similar to what we found in our
long availability condition. Although visual adaptation during
continuous visual perception likely plays a role in explaining the
reduced classification accuracy found in our and other studies
(Carlson et al. 2011), several questions still remain open. First and

foremost, visual adaptation does not explain the most puzzling
of our results: the fact that the common qualitative vividness
of visual experience is not accompanied by strong classification
performance for the stimulus feature. Second, adaptation does
not seem to occur in the short availability condition. At first
glance, it might seem obvious that adaptation occurs to a lesser
extent when there is no available sensory stimulus to adapt to.
A priori however, there is no reason to assume that adaptation
should not occur for neurons that are active for prolonged periods
during the delay period without sensory input, especially because
sensory populations seem to be shared between perception and
working memory (Harrison and Tong 2009; Rademaker et al. 2019,
our results Fig. 3I). From another perspective, adaptation serves a
number of proposed functions including efficient coding (Clifford
et al. 2007; Wark et al. 2007), error correction (Andrews 1967),
and predictive coding (Chopin and Mamassian 2012). Assuming
that working memory maintenance does not induce adaptation,
implicitly assumes that these functional properties of adaptation
do not play a role in working memory maintenance. This notion
is in contrast with several experimental findings that propose a
potential role of adaptation during short-term memory processes
(Marder et al. 1996; Turrigiano et al. 1996), most recently in the
context of language processing (Fitz et al. 2020). As the previ-
ously mentioned principles (efficient coding, error correction, and
predictive coding) are hypothesized to be fundamental principles
of neural coding, we consider it very likely that they are also
involved in higher level cognitive functions such as working mem-
ory. Moreover, efficient coding is assumed to serve the reduction
of metabolic cost by reducing stimulus-related spiking activity,
for instance when sensory information stays unchanged (or avail-
able), which is consistent with our hypothesis (Clifford et al. 2007;
Wark et al. 2007).

Although our MVPA analysis revealed little evidence for the
spatial frequency of the stimuli after a few hundred milliseconds
(short availability: 1180 ms, long availability 660 ms), it is unlikely
that the information completely vanished from the brain and
more likely reflects the limitations of our measurement instru-
ments. Considering that participants were able to perform the
task with reasonable accuracy the information must have been
somehow stored but escaped our classifiers. This could be due
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to several reasons. First, it is plausible that the quality of our
signal deteriorated over time due to slow drifts in the EEG signal
(van Driel et al. 2021). Moreover, it has been proposed that neural
representations can be stored in so called “activity-silent” states
that rely on short-term synaptic changes to encode information
(Mongillo et al. 2008; Chota and Van der Stigchel 2021). This
latter possibility has mostly been discussed in the context of
working memory; hence, it is not clear if this also applies to the
representation of perceptual information.

Activity silent states are only one of several potential mecha-
nisms supporting the representation of visual information during
perception and working memory. Although work supporting the
sensory recruitment hypothesis (Ester et al. 2009, 2016; Serences
et al. 2009, results from our cross-generalization analysis Fig. 3I)
suggests a certain degree of similarity, differences in how visual
information is encoded in neural patterns could make certain
patterns appear more similar when using a multivariate approach
such as the one employed here. This could give the false impres-
sion that lower decoding accuracy in one condition is necessarily
the result of less information in the neural signal instead of an
increase in pattern similarity between stimulus classes. Although
not being able to fully exclude this possibility, we ensured that
at least functionally, similar representational systems had to be
engaged between the long and short availability conditions, by
keeping the stimulus sets, task, and difficulty as well as training
sets for classification identical (Fig. 3I).

In a previous EEG decoding experiment, it was demonstrated
that the relevant features of multi-object features could be
decoded better than irrelevant features during the working
memory delay period (Bocincova and Johnson 2019). Similar
evidence was provided by fMRI studies showing significantly
better decoding accuracy for relevant versus irrelevant features
of items maintained in WM (Serences et al. 2009; Yu and Shim
2017). Our findings are in line with these results, showing
that classification performance is decreased for irrelevant
features during the delay period. Interestingly, several behavioral
studies suggested that objects are stored in working memory as
integrated features, the so-called object-based storage account
(Luck and Vogel 1997; Vogel et al. 2001; Olson and Jiang 2002;
Xu 2002a, 2002b, 2006; Awh et al. 2007; Fougnie et al. 2013).
Some of these studies even show that capacity limitations do
not significantly differ when subjects have to memorize the
orientation, the color or both features of an object (Luck and
Vogel 1997). While the present results and other decoding studies
show that decoding accuracy is reduced or even at chance for
irrelevant features, it is possible that the neural signals for these
features are simply not decodable to the same extent as the
relevant features, for instance because of lower signal to noise
or differences in neural codes (van Loon et al. 2018; Chota and
Van der Stigchel 2021; Iamshchinina et al. 2021). If the stimulus-
specific delay activity for a certain feature is an indication of the
effort that is required to maintain or keep the feature active (e.g.
as search template), our current findings support the idea that
irrelevant features are kept in a low effort state, e.g. a synaptic
code (Mongillo et al. 2008).

Our findings are in support of an embodied account of working
memory (Van der Stigchel 2020). Our visual environment and the
physical objects it contains remain relatively stable over time. The
brain can utilize this fact to optimize working memory usage by
evaluating, e.g. which information will be lost if it is not currently
encoded. This evaluation could be used to flexibly increase (due
to high relevance or short availability) or decrease (due to irrele-
vance or long availability) the representational strength of object
features. This important interaction between the external world,

providing context and information, and working memory system
has been largely ignored by traditional models of WM, who have
investigated internal memory as isolated system, only engaged
when information is no longer available. Our study provides an
intriguing example of how these crucial factors can drastically
alter multivariate classification—a likely proxy for representa-
tional strength—and why studying these interactions might be
crucial for the study of WM.

We demonstrate that stimulus features that are memorized
(but absent) can be significantly better classified using EEG MVPA
compared with the same stimulus features when they are readily
available and attended. Our findings highlight the role of two
key factors, relevance and availability, that determine the quality
of stimulus-specific visual representations. At the same time,
our findings raise the intriguing question of why the quality
of these visual representations in visual processing regions is
not indicative of the vividness of subjective experience. Finally,
our results speak to the embodied and economic use of limited
representational resources in the brain.
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