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Since the inception of psychology as a scientific disci-
pline, the question of how conscious experiences arise 
has been central. Our visual environment is character-
ized by structures and regularities. Is our conscious 
experience of the visual environment shaped by our 
past experiences of these regularities? This question is 
important, because, as human beings, we naturally seek 
to recognize patterns in features (e.g., the red and cir-
cular properties of an apple) and understand temporal 
and spatial properties of events (e.g., the arrangement 
and sequence of traffic lights). This inherent ability to 
extract distributional regularities from the environment, 
serving as a foundation for the behavioral functioning 
and adaptability of organisms in their surroundings, is 
commonly referred to as statistical learning. Over the 
past two decades, statistical learning has become a 
major area in cognitive research, as is indicated by its 
pervasive influence on a wide range of basic and 
higher-level cognitive processes (for reviews, see 

Bogaerts et al., 2020; Frost et al., 2019; Sherman et al., 
2020). These processes include language acquisition 
(e.g., Saffran et al., 1996), perception of high-level per-
ceptual units (e.g., events; Brady & Oliva, 2008), rec-
ognition and association of meaningful chunks for 
learning, memory (e.g., Brady et al., 2009), and social 
inference (e.g., Dotsch et al., 2017). Among these cog-
nitive functions, many are predicated on the acquisition 
of conscious resources (e.g., Sabary et al., 2020). Sur-
prisingly, despite extensive exploration on the functions 
of statistical learning, it is unknown whether statistical 
learning regulates the conscious access of sensory 
inputs before the level at which conscious functions 
(e.g., memory, language, inference) are regulated. To 
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Abstract
Statistical learning is a powerful mechanism that enables the rapid extraction of regularities from sensory inputs. 
Although numerous studies have established that statistical learning serves a wide range of cognitive functions, it 
remains unknown whether statistical learning impacts conscious access. To address this question, we applied multiple 
paradigms in a series of experiments (N = 153 adults): Two reaction-time-based breaking continuous flash suppression 
(b-CFS) experiments showed that probable objects break through suppression faster than improbable objects. A 
preregistered accuracy-based b-CFS experiment showed higher localization accuracy for suppressed probable (versus 
improbable) objects under identical presentation durations, thereby excluding the possibility of processing differences 
emerging after conscious access (e.g., criterion shifts). Consistent with these findings, a supplemental visual-masking 
experiment reaffirmed higher localization sensitivity to probable objects over improbable objects. Together, these 
findings demonstrate that statistical learning alters the competition for scarce conscious resources, thereby potentially 
contributing to established effects of statistical learning on higher-level cognitive processes that require consciousness.
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understand how statistical learning influences such 
higher-tier cognitive functions, one must first establish 
whether statistical learning affects conscious access of 
sensory inputs.

The hypothesis that statistical learning affects con-
scious access is supported by the overlap between the 
behavioral correlates of statistical learning and con-
scious access. Previous studies suggested that statistical 
learning generates memory chunks (Orbán et al., 2008), 
induces implicit anticipations (Turk-Browne et  al., 
2010), and regulates the allocation of attention (e.g., 
Wang & Theeuwes, 2018) and working memory 
resources (e.g., Brady et  al., 2009; Umemoto et  al., 
2010). Given that these factors have been shown to 
influence the detection of interocularly suppressed 
stimuli (working memory, Gayet et al., 2013; anticipa-
tion, Denison et al., 2011, 2016; Pinto et al., 2015; and 
perhaps attention, Thibault et al., 2016—but see Gayet 
et  al., 2020), one might hypothesize that statistical 
learning directly affects conscious access. Alternatively, 
it is conceivable that statistical learning does not affect 
conscious access, because similar learning processes 
(e.g., perceptual learning) do not affect detection of 
stimuli under interocular suppression (Mastropasqua 
et al., 2015; Paffen et al., 2018).

To investigate whether statistical learning affects con-
scious access, we first used a reaction-time-based 
breaking continuous flash suppression paradigm 
(b-CFS; Jiang et al., 2007) in Experiments 1 and 2 (Fig. 
1). Here, the time it takes for observers to report some 
aspect of interocularly suppressed targets is related to 
the competitive strength of stimuli for entering visual 
awareness (e.g., higher-contrast targets will break sup-
pression faster than low-contrast ones). To exclude the 

possibility that differential reaction times in b-CFS can 
reflect differences emerging after conscious access 
(e.g., decisional and postperceptual processes; Stein & 
Peelen, 2021), we further conducted two follow-up 
experiments. In Experiment 3, we used an accuracy-
based b-CFS paradigm (Litwin et al., 2023) in which the 
localization accuracy for interocularly suppressed high- 
and low-probability feature stimuli were compared. In 
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Fig. 1. Trial overview of the breaking continuous flash suppression (b-CFS) paradigm used in Experiments 1 and 2 (a). Targets could 
appear on the left or right of fixation and could consist of upright or inverted triangles (b).

Statement of Relevance

Our visual environment provides us with a con-
tinuous stream of complex information, most of 
which is highly structured. Cars, for example, have 
prototypical locations (e.g., on the road rather 
than in the sky) and share prototypical visual char-
acteristics (e.g., a horizontally elongated shape). 
It is known that human beings are extremely pro-
ficient at extracting such structural regularities to 
facilitate a wide range of cognitive functions. How-
ever, it is unknown whether this prior learning of 
environmental structures shapes our conscious-
ness—a core aspect of human cognition. The pres-
ent study revealed for the first time that statistical 
learning can influence the selection of sensory 
input for conscious perception, prioritizing prob-
able events over improbable events in conscious 
access. The direct effect of statistical learning on 
consciousness may explain how statistical learning 
serves a wide range of cognitive functions that 
benefit from or depend on consciousness, such as 
memory, learning, and inference.
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addition, a supplemental experiment (see Supplemental 
Material 2 in the Supplemental Material available online) 
used a visual-masking technique (Stein & Peelen, 2021) 
to compare the localization sensitivity to masked high- 
and low-probability feature stimuli.

Open Practices

All materials, data, and analysis scripts for all experi-
ments have been made publicly available via the Open 
Science Framework (OSF) and can be accessed at 
https://osf.io/2v4dh. Experiment 3 (https://osf.io/
w7g25) and one supplemental experiment (Supplemen-
tal Experiment B, https://osf.io/y96ba) were preregis-
tered at OSF.

Method (Experiment 1)

In Experiment 1, we examined whether the presence 
of statistical regularities of target locations influences 
conscious access to targets. Specifically, if statistical 
learning of spatial locations affects conscious access, 
we should observe shorter reaction times (in an orthog-
onal discrimination task) for targets that appear at high- 
versus low-probability locations.

Participants

The predetermined sample size for this first experiment 
was loosely based on previous statistical-learning stud-
ies (Wang & Theeuwes, 2018). Twenty-five healthy par-
ticipants, naive to the purpose of the experiment, 
participated in Experiment 1 after signing an informed 
consent form. One observer who did not follow instruc-
tions (i.e., the participant did not look through the 
binocular stereoscope) was excluded from all data 
analyses and was replaced. The eventual sample con-
tained 24 participants (19 women and 5 men, mean  
age = 24.13 years, SD = 2.49 years) for data analysis. 
All participants had normal or corrected-to-normal 
vision, and none had color blindness. The experiment 
was approved by the Ethics Committee of the Faculty 
of Social and Behavioral Sciences of Utrecht University. 
Participants received monetary compensation for their 
participation.

Apparatus and stimuli

The experiment was conducted on a 27-in. LCD monitor 
(2,560 × 1,440 pixels, 100-Hz refresh rate). The experi-
ment took place in a darkened laboratory with all light 
sources turned off except for the computer screen, 
which was positioned at an effective viewing distance 
(the distance the light travels from monitor to eye) of 

57 cm. The presentation area on the screen was com-
posed of two parts (half-images presented on the left 
and right half of the monitor) which were viewed 
dichoptically through a stereoscope mounted on a chin 
rest. The stereoscope made it possible to independently 
stimulate the left and right eyes of participants, thus 
triggering interocular competition. To promote binocu-
lar fusion of the two competing images, we ensured 
that each display that contained a competing image had 
a gray background (16.2 cd/m², x = 0.283, y = 0.298, 
(9.5° × 7.2°) surrounded by a Brownian noise square 
frame with a thickness of 0.5°. The remaining part of 
the screen was set as a uniform black background with 
luminance of 0.05 cd/m².

The target stimulus consisted of an upright or inverted 
triangle (1.4° in height and length) that was presented 
to a single eye. This target was distanced 2.4° from a 
central fixation dot (a 0.3° white dot with a black edge). 
The other eye was presented with high-contrast colored 
masks that were changed at a rate of 10 Hz. These masks 
were made up of randomly arranged circles (diameter 
0.3° to 1.5°) of different colors (they differed both in 
hue and luminance). One hundred and twenty different 
CFS masks were generated before the experiment and 
appeared in a random order (without replacement) 
across different trials. The dynamic high-contrast CFS 
masks were presented to one eye to perceptually sup-
press the static stimulus shown to the other eye, thereby 
rendering the static stimulus initially unconscious. The 
experiment was programmed using the Psychophysics 
Toolbox (Brainard, 1997) in MATLAB (2021a; The Math-
Works, Natick, MA). Data analysis was performed in 
JASP (2022; Version 0.16.1; Love et al., 2019).

Procedure

Each trial started with a fixation dot that appeared at 
the center of the screen for 500 ms. After this, a dynamic 
CFS mask was presented to one eye of the participant. 
Meanwhile, the target was presented to the other eye 
of the participant with its intensity (i.e., opacity) ramp-
ing up from zero to full opacity within 1,000 ms (Fig. 
1a). At the start of the trial, participants were unable to 
consciously perceive the triangle because it was interoc-
ularly suppressed by the CFS masks. Over time, the 
visibility of the dynamic CFS mask presented to one 
eye was gradually reduced, with its transparency 
increasing gradually. The increasing intensity of the 
target and the decreasing intensity of the mask jointly 
caused the target to be eventually released from interoc-
ular suppression, thus allowing participants to report 
upon the target. The presentation of the CFS masks and 
the target ended when a participant responded or after 
10 s had passed. Participants were required to press 

https://osf.io/2v4dh
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one of two buttons to indicate the orientation of the 
triangle as quickly and accurately as possible (↑ for 
upright triangles, ↓ for inverted triangles). We manipu-
lated how often a triangle was presented at different 
locations (left vs. right) but required participants to 
report triangle orientation (upright vs. inverted); see 
Figure 1b. Consequently, the response mapping was 
orthogonal to the experimental manipulation, minimiz-
ing the influence of response bias.

Targets (triangles) appeared on a specific side, either 
the left or right side of the screen, on 75% of all trials 
(the high-probability condition), and appeared on the 
other side of the screen on the remaining 25% of all 
trials (the low-probability condition). The location (left 
vs. right sides) being set as the high-probability location 
was counterbalanced between participants. In contrast, 
the orientation of triangles was counterbalanced (with 
random presentation orders) within participants across 
different trials. The distance from the target to the fixa-
tion dot was the same in all trials; that is, the target was 
positioned on the outline of an imaginary circle with a 
radius of 2.4°. To preserve a clear distinction between 
the left and right of fixation, we made sure that targets 
could appear only in the left and right quadrants of the 
imaginary circle on one of 20 equally interspersed loca-
tions. The exact position within a quadrant was drawn 
at random (and thus not counterbalanced), so that tar-
gets had an equal probability of appearing either 
(slightly) above or below the horizontal midline.

After the response, participants kept viewing the 
target display with both eyes for 1,000 ms. Meanwhile, 
participants also received sound feedback (500 ms): a 
high-pitched beep sound (2000 Hz) or a low-pitched 
beep sound (1500 Hz) for correct or incorrect responses, 
respectively. This phase was not only a feedback phase 
but also served as an important learning phase: Given 
that it is unclear whether statistical regularities can be 
extracted from interocularly suppressed stimuli, we 
showed the targets without suppression at the end of 
each trial to ensure that participants could learn the 
statistical regularities from stimuli that were not interoc-
ularly suppressed.

The formal experiment was composed of eight prac-
tice trials and six blocks of 32 formal trials. Here, we 
manipulated the prevalence of the target locations, so 
that it was more likely to appear to the left of fixation 
(75% of trials) than to the right of fixation for half of 
the participants, and vice versa for the other half of the 
participants. We refer to these as regularity blocks. The 
color of the target was green (7.70 cd/m², x = 0.288,  
y = 0.444 at full opacity) in the regularity blocks. To 
enhance the motivation of participants, we provided 
them with feedback about their average performance 
at the end of each block, showing their mean reaction 

times and the mean accuracy of that block. After check-
ing the performance, participants had the opportunity 
to take a self-initiated rest. We set up a mandatory rest 
every three blocks for all participants. In addition, 
before the formal experiments, we also asked partici-
pants to finish three blocks of 32 trials in which the 
statistical regularity was absent (nonregularity blocks); 
see Supplemental Material 3.

To probe participants’ explicit knowledge about the 
existence of the manipulated regularities, we asked 
participants to estimate the probability of targets 
appearing on the left or right of fixation (the regularity 
dimension), as in previous studies (e.g., Wang &  
Theeuwes, 2018). Notably, this coarse post hoc mea-
surement alone is insufficient for drawing conclusions 
about the implicit nature of statistical learning (see Giménez- 
Fernández et al., 2020; Vadillo et al., 2022). The modest 
sample size in our experiments might not guarantee 
adequate power for relating the magnitude of the effect 
of statistical learning on conscious access to individual 
participants’ awareness of the regularities (Vadillo et al., 
2020). However, the debated (un)consciousness of sta-
tistical learning (e.g., Conway, 2020; Giménez-Fernández  
et al., 2020; Turk-Browne et al., 2005) is not the focus 
of our study. For the transparency of the results, we 
present descriptive statistics and correlation analysis, 
with a cautionary note that these statistics cannot be 
taken as definitive evidence for or against participants’ 
awareness of the regularities.

Results (Experiment 1)

The b-CFS task

Incorrect responses were excluded from all data analy-
ses (2.41% of all trials). The accuracy of participants 
ranged from 89.58% to 100%, with an average accuracy 
of 97.59% (SD = 0.02). To test whether statistical learn-
ing develops over time, we further compared the reac-
tion times (RTs) to targets at high- and low-probability 
locations across time. To this end, we divided the 
experiment into epochs of 64 trials (the conditions, high 
versus low probability, were fully counterbalanced 
within each of these individual epochs). We conducted 
a repeated-measures ANOVA with the factors of prob-
ability (high vs. low) and epoch (1 to 3) to investigate 
how the influence of statistical regularities on RTs 
would evolve over time.

Results showed that the main effect of probability 
was significant, F(1, 23) = 6.05, p = .022, ηp

2 = .21. 
Specifically, RTs for the high-probability locations (3.66 s, 
SD = 1.81) were 0.47 s shorter than for the low-proba-
bility locations (4.13 s, SD = 2.00); see Figure 2a. The 
shorter RTs for targets presented at high-probability 
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locations indicate that visual input gains faster access 
to consciousness when appearing at a probable (rather 
than improbable) location. The main effect of epoch 
was also significant, F(2, 46) = 8.84, p < .001, ηp

2 = .28, 
reflecting a general decrease in RTs over the course of 
the experiment. Importantly, the absence of an interac-
tion between probability and epoch, F(2, 46) = 0.30, p = 
.742, ηp

2 = .01, suggests that the difference in RTs to 
targets appearing on high- compared to low-probability 
locations did not change over the course of the experi-
ment (Fig. 2b). To test whether the statistical-learning 
effect appeared at early stages of the experiment, we 
further conducted t tests to compare RTs to targets on 
high- and low-probability locations in the first epoch. 
Results showed that RTs for the high-probability loca-
tions were already shorter than for the low-probability 

locations in Epoch 1, t(23) = 3.26, p = .003, Cohen’s d = 
0.67, 95% confidence interval (CI) = [0.20, 0.90]. These 
data show that participants rapidly extracted the statisti-
cal regularities of the target location and that the effect 
of statistical regularities on conscious access did not 
change over time.

Intertrial priming effects

An alternative account for the RT difference between 
the high- and low-probability trials could be an inter-
trial priming effect. For example, a previous study sug-
gested that targets repeated on successive trials gain 
preferential access to consciousness (Peremen et  al., 
2013). There were more consecutive trials for the high-
probability location trials than for the low-probability 

Experiment 1 (Spatial Regularity)

12

10

8

6

4

2

0

−2

High Low Difference
Probability

High Low Difference
Probability

1-64 65-128129-192
Trial

1-64 65-128129-192

Trial

0 50 100
Subjective Awareness (%)

0 50 100
Subjective Awareness (%)

Experiment 2 (Feature Regularity)

1

0.5

−0.5

0

Re
ac

tio
n 

Ti
m

e 
(s

)

RT
 D

iff
er

en
ce

 (s
)

1

0.5

−0.5

0

RT
 D

iff
er

en
ce

 (s
)

12

10

8

6

4

2

0

−2

Re
ac

tio
n 

Ti
m

e 
(s

)

4

3

2

1

−1

0

−2
RT

 D
iff

er
en

ce
 (s

)

4

3

2

1

−1

0

−2

RT
 D

iff
er

en
ce

 (s
)

∗∗∗

∗

a b c

d e f

r = .149, p = .488

r = −.107, p = .617

Fig. 2. The results of Experiments 1 and 2. In (a) and (d), mean reaction times (RTs) in the high-probability and low-probability 
conditions are displayed, with individual dots representing individual participants; in (b) and (e), RT differences between the 
high- and low-probability conditions over time are shown. The correlation between participants’ RT difference and their sub-
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occurring) are illustrated in (c) and (f). Error bars represent 95% confidence intervals of the mean. Asterisks indicate signifi-
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location trials in our study, so it is possible that the 
faster target detection in high-probability trials was due 
to the advantage caused by such intertrial priming 
instead of the learned regularities. To exclude such a 
possibility, we compared RTs for high-probability trials 
preceded by a high-probability trial with those pre-
ceded by a low-probability trial, and we compared RTs 
for low-probability trials preceded by a low-probability 
trial with those preceded by a high-probability trial 
(Golan & Lamy, 2023). Results showed that for high-
probability trials, there was no difference in RTs 
between trials that were preceded by a high-probability 
trial (3.66 s, SD = 1.81) and those that were preceded 
by a low-probability trial (3.63 s, SD = 1.84), t(23) = 
0.43, p = .673, Cohen’s d = 0.09, 95% CI = [–0.13, 0.19]. 
For low-probability trials, we also found no difference 
in RTs between trials preceded by a low-probability 
trial (4.09 s, SD = 2.21) and those preceded by a high-
probability trial (4.12 s, SD = 1.97), t(23) = 0.21, p = 
.838, Cohen’s d = 0.04, 95% CI = [–0.34, 0.41]. These 
results show that the observed difference between RTs 
for high- and low-probability locations is unlikely to 
have been caused by intertrial priming.

The subjective-awareness ratings

Out of the 24 participants, there were 14 participants 
who correctly guessed the regularity (no preferences: 
8; incorrect guesses: 2). A rank-based Spearman’s cor-
relation test (p < .05 in the Shapiro-Wilk test of normal-
ity) indicates that in our sample there was no significant 
correlation between the calculated subjective-aware-
ness score and the difference in RTs between high- and 
low-probability locations in the b-CFS task (r = .15, p = 
.488; see Fig. 2c), suggesting that the effect on con-
scious access did not depend on the level of awareness 
of the regularity. As mentioned above, the results here 
provide only weak evidence for the level of awareness 
of the regularity of the participants and need to be 
interpreted with caution because of the limitations of 
the methods (e.g., lack of statistical power).

Method (Experiment 2)

Experiment 2 was aimed at extending the findings of 
Experiment 1 by testing whether the presence of sta-
tistical regularities of target features (instead of target 
locations) also accelerates conscious access of targets 
comprising high-probability features. If statistical learn-
ing affects conscious access at the level of features, we 
should observe shorter reaction times to targets com-
prising high-probability (vs. low-probability) features.

The methods were generally identical to those of 
Experiment 1 except for the following changes. First, a 
new group of 24 healthy participants (20 women and 4 

men, mean age = 25.08 years, SD = 3.17) were recruited 
for the experiment. The sample size was set to match 
that of Experiment 1. Second, in the regularity blocks, 
we manipulated the probability of targets being upright 
or inverted, instead of manipulating the probability of 
target locations. Participants were asked to determine 
target locations (left or right) as quickly as possible, 
instead of reporting the target orientation (see Fig. 1).

Results (Experiment 2)

The b-CFS task

Incorrect responses were excluded from all data analy-
ses (1.54% of all trials). The accuracy of participants 
ranged from 94.79% to 100%, with an average accuracy 
of 98.46% (SD = 0.01).

As in Experiment 1, we also conducted a repeated-
measures ANOVA with the factors of probability (high 
vs. low) and epoch (1 to 3) in Experiment 2. Results 
showed that the main effect of probability was, again, 
significant, F(1, 23) = 15.19, p < .001, ηp

2 = .40. Specifi-
cally, RTs for the high-probability features (2.30 s,  
SD = 1.03) were 0.24 seconds shorter than for the low-
probability features (2.54 s, SD = 1.23); see Figure 2d. 
The shorter RTs for targets presented with high- 
probability features indicated that visual input gains 
faster access to consciousness when appearing with a 
probable (rather than improbable) feature. Apart from 
this, the main effect of epoch was also significant, F(2, 
46) = 14.34, p < .001, ηp

2 = .38, which reflects a general 
decrease in RTs over the course of the experiment.

The interaction between probability and epoch was 
not significant, F(2, 46) = 1.22, p = .305, ηp

2 = .05, sug-
gesting that the difference in RTs to targets with high- 
compared to low-probability features did not change 
over the course of the experiment (Fig. 2e). As in Exper-
iment 1, we further conducted t tests to compare  
RTs to targets on high- and low-probability features in 
the first epoch; this showed that RTs for the high- 
probability features were already shorter than for the 
low-probability features in Epoch 1, t(23) = 3.39, p = 
.003, Cohen’s d = 0.69, 95% CI = [0.11, 0.44]. These data  
show that the statistical regularities of the target feature 
were extracted rapidly and affected conscious access 
accordingly.

Intertrial priming effects

As in Experiment 1, we conducted analyses to exclude 
possible intertrial priming effects. Results showed that 
for high-probability trials, there was no difference in RTs 
between trials preceded by a high-probability trial (2.30 s, 
SD = 1.04) and those preceded by a low-probability 
trial (2.27 s, SD = 1.04), t(23) = 0.41, p = .688, Cohen’s 
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d = 0.08, 95% CI = [–0.11, 0.17]. For low-probability 
trials, we also found no difference in RTs between trials 
that were preceded by a low-probability trial (2.46 s, 
SD = 1.40) and those preceded by a high-probability 
trial (2.56 s, SD = 1.22), t(23) = 0.76, p = .452, Cohen’s 
d = 0.16, 95% CI = [–0.16, 0.35]. Therefore, the differ-
ential RTs between high- and low-probability features 
is unlikely to have been caused by intertrial priming.

The subjective-awareness ratings

Out of the 24 participants, 11 participants correctly 
guessed the regularity (no preferences: 9; incorrect 
guesses: 4). A rank-based Spearman’s correlation test 
(p < .05 in the Shapiro-Wilk test of normality) showed 
that there was no significant correlation between the 
calculated subjective-awareness score and the differ-
ence in RTs between high- and low-probability features 
in the b-CFS task, r = –.11, p = .617 (see Fig. 2f). Again, 
these findings provide only weak evidence for the 
absence of a relation between awareness of the regular-
ity and conscious access, and they should be approached 
with caution because of the methodological constraints 
(e.g., lack of statistical power).

Method (Experiment 3)

The goal of Experiment 3 was to test whether statistical 
learning affects conscious access by excluding process-
ing differences emerging after conscious access (e.g., 
shifts in response criteria, which affect RTs). To this 
end, we used an accuracy-based variant of the b-CFS 
paradigm (Litwin et al., 2023) in which we compared 
the localization accuracy for high-probability versus 
low-probability features, given the same stimulus- 
presentation time. The methods and hypothesis of this 
experiment were preregistered before data collection 
(https://osf.io/w7g25).

In this paradigm, participants performed a non-
speeded two-alternative forced-choice (2AFC) localiza-
tion task during viewing of a b-CFS presentation (i.e., 
CFS masks to one eye and a target to the other eye). 
The duration of the CFS presentation was predeter-
mined before every trial and kept identical between 
conditions of interest (high- and low-probability condi-
tions, in our case). Because responses in this paradigm 
are nonspeeded, participants’ responses on the forced-
choice task reflect how much information they obtained 
about a stimulus within a given presentation duration. 
If for a specific presentation duration (e.g., yielding 
~80% localization accuracy on average across high- and 
low-probability conditions), participants have more 
information about the identity or location of a stimulus 
in condition A compared to condition B, we can 

establish that conscious access of the stimulus (the 
identity or location) was faster in condition A than in 
condition B. This precludes any effect of decisional 
biases and postdetection effects, because it exhaustively 
measures the amount of information available to the 
participant within a specific time frame (Litwin et al., 
2023).

Participants

After reviewing the effect size (Cohen’s d = 0.34) of a 
previous study that used the bias-free b-CFS paradigm 
to measure conscious access (Litwin et al., 2023), we 
concluded that a sample of 55 participants was needed 
for an experimental power of 80% with an alpha level 
of 0.05 for a planned one-tailed paired-samples t test 
(power calculation performed in G*Power). We opted 
to preregister a one-tailed test because we had clear 
predictions on the directionality of the effect following 
Experiments 1 and 2 and the supplemental experiment 
(see Supplemental Material 2). To counterbalance the 
between-subjects condition (i.e., upright or inverted 
triangles as the high- or low-probability feature), we 
recruited one more participant than was specified in 
the preregistration (i.e., 56 participants). A new group 
of 61 participants was recruited. For each participant, 
we simultaneously ran two independent staircases (for 
stimuli appearing left and right of fixation). According 
to the preregistered analysis plan, we excluded 5 par-
ticipants whose average accuracy in both staircases was 
lower than 65% or higher than 95% from data analysis. 
This resulted in the planned sample size of 56 partici-
pants (49 women and 7 men, mean age = 24.59 years, 
SD = 2.77).

Apparatus and stimuli

The apparatus and stimuli used in Experiment 3 were 
the same as in Experiments 1 and 2.

Procedure

For any given participant, either the upward pointing 
triangle or the downward pointing triangle was selected 
as the high-probability feature (e.g., the triangle pointed 
upward in 75% of all trials), whereas the other one was 
the low-probability feature (e.g., the triangle pointed 
downward in the remaining 25% of all trials). Which one 
was selected as the high-probability feature was coun-
terbalanced across participants. Within both the low- and 
high-probability conditions, different target location con-
ditions (left or right of fixation) occurred equally often.

At the beginning of each trial, a central white fixation 
dot (with a black edge) appeared at the center of the 

https://osf.io/w7g25
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presentation area for 500 ms (Fig. 3a). After this, a 
dynamic CFS mask (consisting of a number of Mondrian 
images, randomly chosen from 120 generated images, 
and replaced at 10 Hz without repetition) randomly 
appeared to the dominant eye of participants. Between 
300 and 600 ms after the onset of the dynamic CFS mask 
(to the dominant eye), the target (a triangle) was pre-
sented to the nondominant eye of the participant (either 
to the left or right side of fixation, with equal probabil-
ity), and remained on the screen for the duration that 
was predetermined by the staircase procedure (ranging 
between 1 and 6 s). During the presentation of the 
target, the intensity (i.e., opacity) of the target linearly 
ramped up within 2 s from zero to the eventual opacity 
(30%, 50%, or 60% of the original stimulus opacity of 
Experiments 1 and 2, depending on performance in the 
practice session; see Supplemental Material 4), regard-
less of the determined target presentation duration.

After the presentation of target and mask stimuli, a 
message—“presented left or right?”—appeared on the 
screen, requiring participants to press one of two arrow 
keys (← for left, → for right) to indicate on which side 
of fixation the target was presented (i.e., a 2AFC local-
ization task). Participants were instructed to respond 
as accurately as possible, without any time pressure. 

After the response, the target stimulus remained present 
for 500 ms for both eyes, which ensured that partici-
pants got the opportunity to learn that one triangle 
orientation was more prevalent than the other. At the 
same time, they received auditory feedback—a high-
pitched beep sound (2000 Hz) or a low-pitched beep 
sound (1500 Hz)—indicating a correct or incorrect 
response, respectively. At the end of the trial, the pre-
sentation area was filled with the same (green) color 
that was used for the target triangle to minimize after-
images at the target location before onset of the next 
trial. After pressing the space bar, the next trial began.

To avoid ceiling or floor effects (or to have more 
trials available for data analysis), we had to keep the 
overall localization performance at a consistent level 
across different visual fields and different phases of the 
experiment. To this end, we used a two-down/one-up 
adaptive staircase method that allowed the algorithm 
to reliably converge on the individual presentation-time 
thresholds to yield a localization accuracy of 80.35% 
(García-Pérez, 2001). We ran two interleaved staircases 
for different presentation positions (left vs. right side 
of the central fixation, respectively), considering the 
differences in nasal and temporal visual hemifields 
(Sahakian et al., 2022). The localization performance 
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of the high- and low-probability trials were thus com-
pared within staircases first and averaged afterward. 
More details for controlling the overall localization per-
formance can be found in Supplemental Material 4.

Participants completed 24 trials for determining eye 
dominance and 32 practice trials in the pre-experiment, 
and then completed five blocks of 32 trials in the formal 
experiment. At the end of the experiment, we measured 
participants’ awareness of statistical regularities in a 
questionnaire, as in Experiments 1 and 2. The results 
of the awareness test, although not preregistered, are 
included here to ensure completeness.

Data analysis

According to the preregistered analysis plan, we used 
a one-tailed paired-samples t test to compare the local-
ization accuracy of the high-probability condition to 
that of the low-probability condition. To avoid ceiling 
or floor effects, we excluded the data from an entire 
staircase (i.e., left or right target location) if the average 
accuracy of that staircase exceeded the predefined ceil-
ing or floor (i.e., accuracy < 65% or > 95%). According 
to this preregistered data-exclusion principle, 5 partici-
pants were completely excluded from data analysis, and 
for 20 participants, the data from one staircase were 
excluded. For each of these 20 participants, the exclu-
sion of one staircase may have resulted in decreased 
precision of estimation for the average localization 
accuracy. However, a considerable number of trials (80 
trials) were left after data exclusion. In addition, similar 
to Experiments 1 and 2, we included an unregistered 
exploratory test to examine intertrial priming effects. 
Because of the insufficient number of trials, no addi-
tional data filtering was applied to the trials of included 
participants. The descriptive statistics and the correla-
tion analysis for the relationship between the statistical-
learning effect on conscious access and participants’ 
awareness of the regularities are also provided.

Results (Experiment 3)

The b-CFS task

Results showed that localization accuracy was higher 
for high-probability targets (0.77, SD = 0.08) compared 
to low-probability targets (fraction correct = 0.75, SD = 
0.10), t(55) = 1.88, p = .033, Cohen’s d = 0.25, 95%  
CI = [0.00, ∞]; see Figure 3b. The higher localization 
accuracy for high-probability (versus low-probability) 
features was in line with our hypothesis in the prereg-
istration, providing evidence that conscious access is 
enhanced for targets with high-probability (versus low-
probability) features. We found no systematic difference 
between the staircased presentation durations of 

high-probability feature trials (2.04, SD = 0.90) and 
low-probability feature trials (2.03, SD = 0.87), t(55) = 
1.03, p = .308, Cohen’s d = 0.14, 95% CI = [–0.01, 0.03], 
thus excluding the possibility that the observed accuracy 
difference was due to unbalanced presentation durations 
between the two conditions. Importantly, we measured 
localization accuracy given a fixed stimulus-presentation 
time, so the differential localization performances can-
not be accounted for by decisional biases and post-
detection effects but must reflect that—within the given 
timeframe—more information about stimulus location 
was extracted in one condition than in the other.

The higher localization sensitivity for probable  
versus improbable features was replicated in a supple-
mental experiment (see Supplemental Material 2)  
using a different blinding technique (the detection-
discrimination dissociation paradigm, or DDD para-
digm; Stein & Peelen, 2021) that uses backward masking 
instead of interocular suppression. Moreover, this 
experiment further showed that the ability to discrimi-
nate between high- and low-probability feature stimuli 
did not influence the magnitude of the statistical- 
learning effects. Therefore, the advantage of probable 
features in localization sensitivity did not depend on 
the awareness of the dimension that carried the regu-
larities (i.e., the feature). These findings further confirm 
that the statistical-learning effects we observed reflect 
differences in conscious access, rather than differences 
in postperceptual or decisional processes.

For further evidence of the robustness of the results, 
see Supplemental Material 1, which depicts the effect 
sizes as a function of included participants for Experi-
ments 1 through 3 and the supplemental experiment.

Intertrial priming effects

As in Experiments 1 and 2, an exploratory test was 
conducted to examine potential intertrial priming 
effects. Results showed that for high-probability trials, 
there was no difference in accuracy between trials pre-
ceded by a high-probability trial (fraction correct = 0.75, 
SD = 0.09) and those preceded by a low-probability 
trial (fraction correct = 0.74, SD = 0.12), t(55) = 0.86,  
p = .394, Cohen’s d = 0.12, 95% CI = [–0.01, 0.03]. For 
low-probability trials, there was no difference between 
trials preceded by a low-probability trial (fraction  
correct = 0.75, SD = 0.17) and those preceded by  
a high-probability trial (fraction correct = 0.72, SD = 
0.12), t(55) = 1.44, p = .156, Cohen’s d = 0.19, 95%  
CI = [–0.01, 0.07].

The subjective-awareness ratings

As in Experiments 1 and 2, we asked participants to 
guess the proportion of upward and downward 



1044 Xu et al.

triangles. Results showed that out of 56 participants, 
there were 7 participants who correctly guessed the 
regularity (no preferences: 22; incorrect guesses: 27). 
The Pearson correlation test (p > .05 in the Shapiro-Wilk 
test of normality) showed that there was no significant 
correlation between the calculated values of subjective 
awareness and the accuracy difference (between high- 
and low-probability features) in the b-CFS task, r = .01,  
p = .926 (Fig. 3c).

General Discussion

In this study, three different paradigms provided con-
verging evidence for the influence of statistical learning 
on conscious access. In reaction-time-based b-CFS 
experiments, targets broke through interocular suppres-
sion faster when they appeared at probable locations or 
contained probable features. In a preregistered accuracy-
based b-CFS experiment, we successfully replicated the 
advantage of probable features in breaking through sup-
pression, while excluding potential contributions of deci-
sional and postperceptual factors (i.e., factors influencing 
the behavioral responses that arise after conscious detec-
tion of the stimulus). Using a different masking tech-
nique (i.e., backward masking) and experimental task 
(the DDD paradigm), the supplemental experiment pro-
vided the additional evidence that the perceptual advan-
tage for probable objects was not correlated to the 
conscious access of the dimension that carried the regu-
larities; this further demonstrates the generalizability of 
our findings across perceptual blinding techniques (i.e., 
backward masking). Taken together, our study goes 
beyond existing work in showing that statistical learning 
alters the priority of sensory inputs for conscious access, 
facilitating the entry of probable targets into conscious-
ness relative to improbable targets.

This finding provides a new perspective on how 
statistical learning underlies many basic and higher-
order cognitive functions. In numerous studies, statisti-
cal learning was suggested as a powerful mechanism 
for determining what information is prioritized in per-
ception (e.g., the effect of statistical learning on visual 
attention; Chun & Jiang, 1998; Wang & Theeuwes, 
2018). We show that this selectivity may begin at the 
early stages of visual processing, even before sensory 
inputs enter conscious experience. Because conscious-
ness is of limited capacity, a large amount of informa-
tion in the environment competes for conscious access; 
the regulation of conscious access by statistical learning 
may enable the processing of potentially relevant 
objects and events for higher-order cognitive functions 
(e.g., conscious attention, Wang & Theeuwes, 2018; 
language, Saffran et  al., 1996; learning and memory, 
Brady et al., 2009 and Umemoto et al., 2010; inference, 

Dotsch et al., 2017). For instance, the superior recogni-
tion of regular stimuli (e.g., regular shapes and mean-
ingful words) by humans from early life onward (e.g., 
Saffran et al., 1996) may be (partially) attributed to their 
faster entry into consciousness. For cognitive mecha-
nisms that highly rely on conscious resources (such as 
working memory; Brady et al., 2009; Umemoto et al., 
2010), statistical learning may increase the amount of 
conscious resources allocated, thus allowing for deeper 
processing and information integration.

We propose that there are several possible (and not 
necessarily mutually exclusive) mechanisms by which 
statistical learning regulates the priority of stimuli 
before they are consciously perceived. First, the influ-
ence of statistical learning on conscious access might 
be mediated by spatial or featural attention toward 
stimuli before they are consciously perceived. Although 
it could be reasoned that top-down attention is involved 
in this process, earlier work has shown that top-down 
attention is not sufficient for enhancing conscious 
access (Gayet et al., 2020; Stein & Peelen, 2021). For 
example, Gayet et al. (2020) showed that, even though 
observers were explicitly incited to attend a feature—
that is, given a strong attentional template—for a con-
current search task, stimuli containing the attended 
feature were not released from suppression faster. A 
more likely hypothesis, then, is that the invisible stimuli 
triggered bottom-up attention and directed the alloca-
tion of attention toward certain locations (Hsieh et al., 
2011; Jiang et al., 2007) and features (e.g., Sun et al., 
2016). Second, statistical learning may evoke implicit 
anticipation of upcoming visual events (Turk-Browne 
et al., 2010), which has been shown to modulate the 
detection of interocularly suppressed stimuli (Denison 
et  al., 2011, 2016; Pinto et  al., 2015). Predicting the 
upcoming image from a sequence of images, for 
instance, can facilitate detection of expected images 
during interocular suppression (Denison et al., 2011), 
and the anticipation of visual stimuli can evoke feature-
specific activity patterns in early visual cortex (e.g., Kok 
et al., 2014). In this way, statistical learning may preac-
tivate stimulus-specific representations in primary visual 
cortex, thereby lowering the effective threshold for 
probable stimuli to breach conscious access. Another 
possibility is that, through neuroplasticity (Conway, 
2020), statistical learning increases the sensitivity or 
selectivity of V1 neurons to specific (e.g., probable) 
stimuli or patterns. Future studies should arbitrate 
between these possible ways in which statistical learn-
ing modulates conscious access.

The fields of statistical learning and perceptual learn-
ing have exhibited a trend toward convergence in  
methods and results in recent years (Fiser & Lengyel, 
2019). However, previous studies found no significant 
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impact of perceptual learning on conscious access 
(Mastropasqua et  al., 2015; Paffen et  al., 2018). For 
example, perceptual training on gratings with specific 
orientations (Mastropasqua et  al., 2015) or specific 
motion directions (Paffen et al., 2018) did not facilitate 
the breakthrough of trained stimuli relative to untrained 
stimuli during interocular suppression. Furthermore, it 
has been shown that perceptual learning must be asso-
ciated with threat to elicit feature-specific effects on 
conscious access (Stein, 2019), whereas we show that 
statistical learning, without being associated with threat, 
can also exert an impact on conscious access. The 
comparison between our findings and the existing lit-
erature therefore suggests that statistical learning and 
perceptual learning may exert distinct influences on 
conscious access. Relatedly, behavioral studies (e.g., 
Trevethan et al., 2012) and neurological studies (e.g., 
He & Gan, 2022) reliably showed evidence that percep-
tual learning can improve cortical blindness to a certain 
extent, increasing detectability of stimuli that were pre-
viously not consciously perceived. Considering that 
statistical learning appears to have a more pronounced 
impact than perceptual learning in modulating con-
scious access of masked stimuli, this opens up the ques-
tion of whether statistical learning would also be more 
effective than perceptual learning in the treatment of 
patients with cortical blindness.

The statistical-learning effects shown here appear to 
be reminiscent of the preferential conscious access of 
familiar stimuli (human faces, language, etc.) over unfa-
miliar stimuli (Gobbini et al., 2013; Jiang et al., 2007; 
Ramon & Gobbini, 2018). In these studies, however, 
familiarity typically relates to explicit and lifelong learn-
ing processes, which have been shown to influence 
perception differently from the short-term extraction of 
statistical regularities, even within the same context 
(e.g., Dogge et al., 2019). At the same time, the advan-
tage of probable stimuli over improbable stimuli may, 
at first glance, seem to contradict the advantages of 
surprising stimuli, such as faster breakthrough of images 
of minority members over majority members (Kardosh 
et al., 2022) or the faster breakthrough of scenes con-
taining unexpected objects (Mudrik et al., 2011). How-
ever, the preferential conscious access of surprising 
stimuli is still up for debate because of the mixed results 
in the literature (e.g., Biderman & Mudrik, 2018). We 
suggest that contextual factors might influence the 
directionality of these effects (i.e., the advantage for 
probable over improbable objects, or vice versa). For 
example, it is possible that statistically unlikely objects 
are prioritized over statistically likely objects when  
the statistically unlikely objects are more informative 
(Denison et al., 2016). Statistically likely objects may also 
be deprioritized because they are distracting (e.g., Wang 

& Theeuwes, 2018). Thus, although we have shown that 
statistical learning increases conscious access to high-
probability stimuli, it is possible that, under certain cir-
cumstances or task requirements, statistical learning 
might differently modulate conscious access (e.g., facili-
tating conscious access to improbable stimuli). This pos-
sibility should be further investigated.

In conclusion, we have consistently shown in four 
experiments that the visual system rapidly extracts sta-
tistical regularities from streams of sensory input to 
promote the selection of information for conscious pro-
cessing. Given that conscious resources are scarce, and 
that access to consciousness is a prerequisite for a 
myriad of cognitive functions, our findings provide a 
mechanism for how statistical learning subserves these 
cognitive functions.
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